Особенности и методы протекторной защиты трубопроводов от коррозии

Защита трубопроводов от коррозии

Содержание статьи
  • Защита подземных трубопроводов
  • Способы защиты:
    • Электрохимическая защита:
    • Катодная защита
    • Протекторная защита
    • Анодная защита
  • Продление срока службы трубопровода
  • Фильм. Защита трубопроводов

Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации. Производств труб для прокладки под землей осуществляется из металлов самых разных типов. Со временем они подвергаются коррозии, что ведет к их разрушению. Данный процесс является неизбежным, но его можно отсрочить с помощью некоторых защитных способов.

Защита подземных трубопроводов от коррозии

Трубопроводы разных видов нашли широкое применение в современном мире. Они практически всегда спрятаны пол землей. Процесс образования коррозии на них не относится к разряду тех, которые можно избежать. Его можно только отсрочить на некоторый промежуток времени. Для этого используются специальные составы, которые на металлической поверхности образуют небольшую защитную пленку. Она не дает агрессивной подземной среде влиять на структуру трубопровода.

Защита трубопроводов от коррозии направлена на то, чтобы остановить все окислительные процессы.

Внимание: Стоит отметить, что на трубах коррозия образуется как внутри, так и снаружи. Внутренняя их часть страдает от того, что коррозийный налет появляется в результате протекания по ним агрессивных веществ, вызывающих окислительные процессы. Внутренняя часть страдает от высокого уровня влажности почвы.

Защитная пленка должна находиться и внутри и снаружи по понятным причинам. Только в этом случае можно предотвратить быстрее появление коррозийного налета, который обладает разрушающими свойствами.

Защита трубопроводов необходима для разных видов коммуникаций. Сегодня защитные способы применяются не только для водопроводных труб, которые страдают от появления ржавчины, но и для газопровдов.

Защита водопроводных труб необходимо по причине того, что по ним вода поступает на предприятия и в дома людей. Она должна быть без всяких примесей. Если трубы ржавые, то водопроводная жидкость будет иметь неприятный оранжевый оттенок. Такая вода не годится для употребления в пищу. Ее даже не используют на промышленных объектах, потому что она может повлиять на свойства выпускаемой продукции.

Таблица. Скорость коррозии металла.
Балл Скорость коррозии Группа стойкости
1 10.1 нестойкие

Способы защиты трубопроводов от коррозии

Сегодня имеется большое количество методов защиты водопроводов от налета коррозии. Они основаны на том, чтобы металл, из которого сделаны трубы, вступил в реакцию с вводимыми веществами и растворами. В результате образуется небольшая пленка, которая обеспечивает защиту. В настоящее время выделяют следующие способы защиты трубопроводов от коррозии:

Электрохимическая защита трубопроводов от коррозии

Трубопроводы данным методом обрабатываются уже много лет. Для этой цели используются растворы электролитов. Благодаря данному методу на металлической поверхности труб появляется плотная защитная пленка высокой прочности. Она не дает агрессивной среде проникнуть в глубокие слои труб. Эффект защиты сохраняется на длительный период.

Катодная защита трубопроводов от коррозии

Данный процесс представляет собой использование электрического тока. Он подается в постоянном режиме, чтобы пленка для защиты металла не разрушалась.

Протекторная защита от коррозии трубопроводов

Данный способ защиты является одним из самых распространенных. Она является самой доступной и не затратной. Ведь для ее воплощения нет необходимости тратить электрический ток. Этот методы заключается в нанесении на поверхность любых труб из металлов сплавов других элементов, которые образуют на их поверхности плотную защитную пленку. Благодаря ней все процессы окисления прекращаются. Для этой цели используются сплавы многих металлов: магний, цинк. В некоторых ситуациях применяется алюминиевый сплав. Данный метод подходи для того, чтобы защищать трубы, которые располагаются под землей.

Анодная защита от коррозии трубопроводов

Данный защитный метод основан на методе анодирования. Он не часто используется по причине того, что он является не экономичным. Для него постоянно требуется подача электрического тока, что приводит к увеличению денежных и энергетических затрат.

Защита трубопровода от коррозии подлит срок их службы

У всех методов защиты трубопроводов имеется большое количество достоинств. Они заключаются в:

  • увеличении уровня прочности труб,
  • увеличении уровня устойчивости к влиянию агрессивной среды,
  • продлении срока службы трубопроводов самых разных типов,
  • увеличении твердости поверхности труб и внутри и снаружи.

Благодаря всем методам защиты удается обеспечить длительный эксплуатационный срок всех трубопроводов. Они дают им возможность прослужить не мене десятка лет.

Видео про з ащиту трубопроводов от коррозии.

Статьи по теме

Флокуляция

Практически наиболее важна флокуляция в водной среде, обусловленная действием растворённых в ней высокомолекулярных соединений (полиэлектролитов или неионогенных полимеров).

Технический углерод

Технический углерод – высокодисперсный углеродистый материал, образующийся при неполном сгорании или термическом разложении углеводородов (природных или промышленных газов, жидких продуктов нефтяного или каменноугольного происхождения).

Седиментация

Седиментация в дисперсных системах с жидкой и особенно газовой дисперсионной средой часто сопровождается укрупнением седиментирующих частиц вследствие коагуляции и (или) коалесценции.

Пассивирование

Пассив и рование, пассивация металлов , переход поверхности металла в пассивное состояние, при котором резко замедляется коррозия.

Оксидирование

В современном мире имеется большое количество методов, которые используются для борьбы с образованием коррозии на поверхности металлов. Метод образования оксидной пленки является одним из самых эффективных.

Анодирование металла

В современном мире имеется большое количество методов обработки металлов и металлических изделий. Они применяются и в промышленных масштабах, и в домашних условиях.

Гальваническое покрытие

В современном мире большую популярность получила процедура нанесения на металлические материалы различных веществ, которые предотвращают образование на них коррозийного налета.

Процесс коррозии

В современном мире из металлов самых разных видов производится большое количество продукции. Металлические материалы присутствуют в разных отраслях промышленности в виде станков и машин, инструментов.

Ингибитор коррозии

Ингибитор не является каким-то конкретным веществом. Так называют целуют группу веществ, которые направлены на остановку или задержку протеканий каких-либо физических или физико-химических процессов.

Особенности и методы протекторной защиты трубопроводов от коррозии

Несмотря на повсеместное применение пластика, металлические трубопроводы по-прежнему широко применяются для транспортировки кислот, щелочей, газов, нефтепродуктов и пр. Такие сооружения со временем начинают приходить в негодность из-за атмосферной, химической и других видов коррозии. Несмотря на то, что это естественный процесс, его, тем не менее, можно замедлить. Для этого и существует протекторная защита металла от коррозии.

Причины появления коррозии

Развитие коррозии трубопроводов происходит в результате реакции окисления металла от постоянного воздействия влажной среды. Изменяется состав металла на ионном уровне. На данный процесс может оказывать влияние состав жидкости, протекающей внутри трубопровода. Причины возникновения ржавчины могут быть следующими:

  • Сплавы, из которых изготовлены трубопроводы, имеют различные электрохимические потенциалы. Это вызывает протекание токов по трубе. Разные потенциалы могут возникать вследствие изменений составляющих грунта, а также разными параметрами показателей окружающей среды.
  • Грунтовые воды или влага, находящаяся в почве.
  • Химический состав почвы, в том числе наличие кислотных примесей во внешней среде.
  • Состав транспортируемой трубопроводом жидкости.
  • Наличие в грунте блуждающих токов.

Чтобы выполнить антикоррозионную защиту, необходимо оценить характеристики, воздействующие на металлическую поверхность.

О видах коррозии

Всего существует несколько разновидностей коррозии металлических труб:

  • поверхностная, распространяющаяся по всей площади трубы;
  • местная, расположенная на отдельных участках;
  • щелевая, образовавшаяся в небольшой трещине.

Наиболее настораживает местная коррозия, так как основная масса повреждений происходит в результате ее появления. Развитие щелевой тоже распространено, но к существенным повреждениям материала она не приводит.

Процент вероятности возникновения коррозии в большую сторону отдается участкам труб, продолженных под железнодорожными переездами или под опорами линий воздушных электропередач. Скорость развития процесса коррозии колеблется от 3 до 30 мм в год.

Что такое химическая коррозия

Этот процесс возникает в неэлектропроводных средах. Ими могут оказаться газы, нефтепродукты и спиртовые соединения. При повышении температурных показателей скорость развития коррозии возрастает. Ржавчина может образовываться на цветных или черных металлах. Алюминиевые изделия под влиянием коррозионных факторов покрываются тонкой пленкой, которая после обеспечивает систему защиты и создает препятствие развитию окислительного процесса.

Медь под влиянием этого вида коррозии начинает зеленеть, при этом образованная пленка из оксида во влажной среде не всегда способствует созданию защитного барьера от ржавчины, а только в порядке исключения, когда структура металла одинакова со структурой пленки.

Сплавы могут быть восприимчивы к иному виду ржавчины, то есть присутствуют элементы, не подверженные окислению, а напротив, они восстановленные. К примеру, при повышенных температурных характеристиках и повышенном давлении восстанавливаются карбиды, но, опять же, утрачиваются нужные качества.

Об электрохимической коррозии

Утверждение о том, что электрохимическая коррозия достигается только при контактировании металлической поверхности с электролитом, ошибочно. Хватает тонкой пленки на основании материала, чтобы образовалась коррозия. Причиной этого вида ржавчины является использование поваренной или технической солей. К, примеру, если производится посыпка снега на дорогах, то страдают машины и проложенные под землей трубопроводы.

Процесс этого происхождения заключается в следующем:

  • В соединениях металлических конструкций теряются отчасти атомы, осуществляется их переход в электролитический раствор, то есть происходит образование ионов. Замещают электроны атомы, они заряжают материал отрицательными зарядами, при этом накапливаются положительные заряды в электролите.
  • Электрохимическую коррозию также вызывают блуждающие токи, которые при утечке из электроцепи уходят в растворы воды или в грунт, а после в саму структуру металла. Конкретными местами проявления ржавчины являются те участки, откуда в воду попадают блуждающие токи.

На видео: электрохимическая коррозия металлов и способы защиты.

Таб.2. Химический состав цинковых протекторных сплавов

Марка сплава Легирующие элементы, % по массе Примеси, % по массе, не более
Алюминий Магний Марганец Титан Кремний Железо Медь Свинец
ЦП1 0,4-0,6 0,001 0,001 0,005
ЦП2 0,5-0,7 0,1-0,3 0,1-0,3 0,004 0,001 0,005
ЦП3 0,2-0,6 0,005-0,1 0,005-0,1 0,004 0,001 0,005

Как обеспечить протекторную защиту

Покрытие труб специальными составами — это задача не только производителя, в процессе эксплуатации конструкции обеспечение защитных свойств тоже должно выполняться. Всего существует несколько способов защиты металла от воздействия агрессивных сред:

  • химическая обработка;
  • покрытие стенок специальными составами;
  • защита от блуждающих токов;
  • подведение катода или анода.

Метод протекторной защиты трубопроводов от коррозии пользуется популярностью в организациях, осуществляющих монтаж и эксплуатирующих трубопроводный вид транспорта.

О пассивных и активных способах

Антикоррозионная защита — это целый комплекс мероприятий, проводимых предприятиями. Пассивные методы защиты предполагают выполнение следующих работ:

  • На стадии монтажа между трубопроводом и грунтом оставляют воздушный зазор, препятствующий попаданию грунтовой воды, в том числе в составе с кислотными и щелочными примесями.
  • Покрытие специализированными составами, назначение которых распространяется от негативных воздействий почвы.
  • Обработка металла химическими составами, с образованием тонкой пленки.

Активные способы защиты предусматривают использование тока и обмен ионов на основе химических реакций, за счет чего обеспечивается:

  • Защита подземных трубопроводов от коррозии созданием электродренажной системы для изоляции трубопроводного транспорта от блуждающих токов.
  • Защита анодом от разрушения металлических поверхностей.
  • Катодная защита для увеличения сопротивления металлических оснований.

Только с учетом всех способов, препятствующих образованию ржавчины на металле, будет увеличен срок службы конструкций. Антикоррозионная защита трубопроводов должна выполняться комплексно.

На видео: защита трубопроводов и кабельных линий от электрической коррозии.

О достоинствах применения протекторов

Защита труб этим способом производится с добавлением компонента — ингибитора. Это материал с отрицательным электрическим зарядом. Под воздействием воздушных масс он растворяется, а конструкция остается целой и не подвергается ржавлению. Протекторная защита от коррозии применяется для продления срока службы строительных конструкций, систем отопления и водоснабжения, а также магистрального и промыслового трубопроводного транспорта.

Применение электрохимической защиты позволяет устранить причины многих видов коррозии. Такая антикоррозийная защита трубопроводов – неплохое решение даже для предприятий, не имеющих финансовых возможностей по обеспечению полноценной защиты от неконтролируемого процесса.

Для обеспечения грамотного подхода следует:

  • Протекторы, изготовленные из алюминия, использовать в средах морских вод и прибрежных шельфах.
  • В средах с небольшой электропроводностью использовать магниевые протекторы. Но, опять же, они не подходят для обработки внутреннего покрытия резервуаров, нефтяных отстойников в связи с тем, что обладают достаточно низкой взрывопожароопасностью.
  • Использовать протекторы для защиты от сред пресной воды.
  • Проекторы, выполненные на основе цинка, являются полностью безопасными, их можно применять на пожаро- и взрывоопасных производствах.

Протекторной антикоррозионной защите можно отнести следующий ряд преимуществ:

  • недостаток денежных средств и производственных мощностей у предприятия не будет препятствием ее выполнению;
  • возможность защиты конструкций небольших размеров;
  • если трубы покрыты теплоизоляционными материалами, то такая защита приемлема.

Используемые материалы и цели применения

Противокоррозионная защита необходима для всех металлических оснований. Данный вид противостояния от ржавчины широко используется для обработки танкеров, так как эти суда наиболее подвержены воздействию воды, имеющей в составе агрессивные компоненты. Даже специальная окраска не справляется с решением этой проблемы.

Наиболее рациональным выбором для покрытия стальных конструкций будет использование протекторов с отрицательным потенциалом. При изготовлении таких устройств применяется магний, цинк или алюминий. Большая разница потенциалов металла и стальных поверхностей способствует увеличению спектра защитного действия, в результате различные виды коррозии устраняются.

Система защиты осуществляется на основании специфики самих протекторов, а также сред, в условиях которых они будут использоваться.

Пассивная защита требуется стальным покрытиям и изделиям из металла. Сущность метода заключается в применении гальванических анодов, обеспечивающих противодействие подземных трубопроводов коррозии. При произведении расчета для данной установки, необходимо учитывать следующие показатели:

  • параметры силы тока;
  • сопротивление от перепадов напряжения;
  • характеристики степени защиты, применяемые для 1 км трубопровода;
  • показатель расстояния между элементами защиты.

Таб.1. Химический состав алюминиевых протекторных сплавов

Марка сплава Легирующие элементы, % по массе Примеси, % по массе, не более
Цинк Магний Олово Цирконий Добавка
АП2 0,4-0,8 0,005-0,1 Железо-0,1
АП3 4-6 0,001-0,1 Медь-0,01
АП4 4-6 0,5-1,0 0,05-0,1 Кремний-0,1

Методы защиты трубопроводных магистралей

Коррозия трубопроводов возникает в процессе их эксплуатации. Образование ржавчины происходит на трубах внутри и снаружи. C внутренней стороны появляются отложения, и причина этому — химические реакции состава транспортируемой жидкости с металлом. На состояние поверхности оказывает влияние и высокий показатель влажности грунта.

Если своевременно не обеспечить защиту, то возможно возникновение ряда последствий. Что важно:

  • плановые осмотры рекомендуется проводить с небольшими временными промежутками.
  • проведение ремонтных работ осуществлять периодически, независимо от наличия коррозии.
  • приостановление функционирования трубопроводного транспорта неминуемо, так как необходимо производить осмотры и выполнять планово-предупредительные и иные текущие ремонты.

Важно! Для обеспечения полной защиты необходимо учитывать способ монтажа, контактирование с агрессивными средами, а также тип трубопровода.

Протекторная защита. Протекторная защита на трубопроводах. Протекторная защита днищ резервуаров в нефтегазовой промышленности.

Несмотря на повсеместное применение пластика, металлические трубопроводы по-прежнему широко применяются для транспортировки кислот, щелочей, газов, нефтепродуктов и пр. Такие сооружения со временем начинают приходить в негодность из-за атмосферной, химической и других видов коррозии. Несмотря на то, что это естественный процесс, его, тем не менее, можно замедлить. Для этого и существует протекторная защита металла от коррозии.

Причины повреждения металлических конструкций

Причин для коррозии металлических изделий достаточно:

  1. Химические реакции. Разрушение происходит при взаимодействии металла с различными химическими соединениями (кислотами, щелочами и пр.). Возникающая как продукт химической реакции ржавчина последовательно разъедает трубопровод.
  2. Электрохимические процессы. Этот вид коррозии один из самых агрессивных. Появляется, если труба или судно находится в электролите, где образовываются катоды и аноды. Возникающая ржа быстро распространяется, повреждая самый толстый металл.
  3. Атмосферные явления. При взаимодействии металла с водой, паром, воздухом выделяется оксид железа, который и разрушает сооружение.

Перед планированием работ по защите от коррозии необходимо провести оценку факторов, влияющих на металлическую поверхность.

Защита металла от коррозии

От коррозии необходимо защищать различные емкости, корпусы судов, резервуары, которые эксплуатируются в экстремальных условиях. Существует несколько вариантов формирования защиты:

  • обработка химическими составами;
  • покрытие стенок защитными материалами;
  • предупреждение блуждающих токов;
  • организация катода или анода.

Защита металла от ржавчины предполагает целый комплекс мер:

  1. Пассивные действия. Во время монтажа трубопровода до прилежащей почвы оставляют некоторый зазор. Он предупреждает попадание грунтовых вод с примесями на металлическую поверхность. Трубопровод покрывают специальными составами, которые защищают металл от негативного воздействия грунта. Затем наносят специальные химические вещества, образующие защитную пленку на металлической поверхности.
  2. Активная защита. Создается электродренажная система, защищающая трубопровод от блуждающих токов. Металлическую поверхность от разрушения защищают созданием анода или катода.

Что такое протекторная защита?

Протекторная защита — вариант антикоррозийной обработки, которая предполагает контакт металлической предохраняемой поверхности с протектором – ингибитором, более активным металлом. Под воздействием воздуха ингибитор предохраняет основное изделие (трубопровод, систему водоснабжения или отопления, корпус корабля и пр.) от разрушения.

Протекторная защита металлов от коррозии является оптимальной при отсутствии возможности проведения специальных электрических линий для создания эффективной катодной защиты перед электрохимической ржавчиной либо при нецелесообразности такого метода. Применять протекторную защиту целесообразно на малогабаритных объектах либо в случаях, когда поверхность обрабатываемого сооружения покрыта изоляционным материалом.

Протектор может полностью предохранить от повреждения основной объект в случае, если показатель переходного сопротивления между объектом и окружающей средой незначительный.

Но протекторная защита от коррозии имеет положительный эффект только на каком-то расстоянии, то есть каждый из видов протекторов имеет свой радиус антикоррозийного действия. Это максимальное расстояние протектора от предохраняемого объекта.

Для антикоррозийной защиты применяют установки, которые состоят из одного или нескольких протекторов, соединительных кабелей и контрольно-измерительных участков. Если есть необходимость, то в схему включают шунты, регулирующие резисторы, поляризованные элементы. Монтируют установки ниже уровня промерзания грунта (не менее 1 метра). Располагают протектор на расстоянии 3 — 7 метров от защищаемого сооружения. Более близкое может спровоцировать повреждение изоляционного слоя солями растворяющегося ингибитора.

Протекторная защита от коррозии трубопроводов предполагает, что электроны более активного металла будут присоединяться к ионам менее активного вещества. В результате такого взаимодействия происходят два процесса:

  1. Менее активный металл восстанавливается.
  2. Протектор окисляется, защищая основное сооружение от коррозии.

Так как во время активного взаимодействия с окружающей средой и трубопроводом протектор полностью «растворяется» или просто теряет контакт с предохраняемым сооружением, то защитный механизм периодически необходимо восстанавливать.

Суть электрохимической защиты

К готовому металлическому изделию извне подключается постоянный ток (источник постоянного тока или протектор). Электрический ток на поверхности защищаемого изделия создает катодную поляризацию электродов микрогальванических пар. Результатом этого является то, что анодные участки на поверхности металла стают катодными. А вследствии воздействия коррозионной среды идет разрушение не металла конструкции, а анода.

В зависимости от того, в какую сторону (положительную или отрицательную) смещается потенциал металла, электрохимическую защиту подразделяют на анодную и катодную.

Особенности протекторной защиты

Учитывая физико-химические особенности такой защиты металлических сооружений, можно сделать вывод о нецелесообразности применения протектора в случае, если конструкция эксплуатируется в кислых средах. Протекторная защита рекомендована к применению, если сооружение находится в нейтральной среде (грунт, вода, воздух и пр.).

Чтобы защитить железный трубопровод, в качестве протектора имеет смысл использовать кадмий, хром, цинк, магний (более активные металлы). Но и при их использовании существует ряд нюансов.

Например, чистый магний имеет высокую скорость ржавления, чистый цинк из-за крупнозернистой структуры растворяется неравномерно, алюминий быстро покрывается оксидной пленкой. Чтобы предотвратить негативные явления, в чистое вещество, которое будет служить протектором, вводят легирующие составляющие. Фактически протектором выступает не чистый металл, а его сплав с другими веществами.

Магниевая защита

Чаще всего в качестве защиты применяют сплавы магния. Легирующими компонентами состава выступают алюминий (максимум 7 %), цинк (до 5 %), также вводят медь, свинец и никель, но их суммарная доля не превышает сотой части состава. В качестве протектора такие составы могут применяться в средах с показателем кислотности не выше 10,5.

Даже в составе сплава магний быстро растворяется, а потом на его верхнем слое появляются труднорастворимые соединения. Магниевые сплавы имеют существенный недостаток — после нанесения они могут спровоцировать растрескивание металлических изделий, способствовать возникновению повышенной водородной хрупкости.

Цинковая защита

Альтернативой магниевому сплаву для защиты конструкций, расположенных в соленой воде, выступают цинковые составы. Легирующими компонентами для цинка становятся кадмий (максимальный показатель 0,15 %), алюминий (менее 0,5 %) и незначительное количество железа, свинца и меди (суммарно до 0,005 %). От влияния морской воды такой протектор будет идеальным, но в нейтральных средах протекторы из цинкового сплава быстро покроются оксидами и гидроксидами, сведя на нет весь антикоррозийный комплекс.

Цинковые сплавы выступают как протекторы от коррозии, обеспечивая максимальную взрыво- и пожарную безопасность. Этими составами целесообразно обрабатывать трубопроводы для горючих и взрывоопасных веществ, например, газа. Еще один «балл» в свой актив такие составы получают за экологическую безопасность – при анодном растворении не образуется загрязняющих веществ. Поэтому цинковые композиции часто применяются для коррозийной защиты нефтепроводов, а также для транспортирующих нефть танкеров и судов.

От воздействия проточной соленой воды обычно применяют алюминиевые составы. В сплав также вводят цинк (до 8 %), магний (до 5 %) и индий с кремнием , таллием и кадмием с незначительной долей (до 0,02 %). Добавки предупреждают возникновение окислов на алюминии. Также алюминиевые сплавы пригодны в условиях, где используется магниевая защита.

Причины

Ниже приведены краткие определения повреждений, которые нивелируются защитой газопроводов от коррозии:

  1. Химическое воздействие – самопроизвольное окисление металлических частей, обусловленное его трансформацией в устойчивую ионную область, под влиянием токонепроводящих составов.
  2. Электрохимическая коррозия – металл разрушается со скоростью, зависящей от электродных внедрений. Это связано с тем, что атомы ионизируются разрозненно, с обновлением окислителя в электролите.
  3. Самая опасная коррозия – атака токами блуждающего типа. Указанная проблема наблюдается вблизи электропроводящих систем, например в районе железнодорожных путей с контактной сетью.

Обработка агрессивных жидкостей

Повреждение металлических конструкций происходит как снаружи, так и внутри. Даже жидкость с нейтральным уровнем кислотности (вода) может быстро разрушить трубопровод, если в ее составе содержатся бикарбонаты, карбонаты, кислород, которые являются причиной возникновения ржавчины. Обычная очистка внутренних поверхностей в таких сооружениях невозможна. Оптимальным выходом будет предварительное введение в жидкость соды, карбоната натрия или кальция. Такой обработкой воды можно снизить агрессивность транспортируемой жидкости.

Подземные емкости, изготовленные из цинковых сплавов, защищают путем введения в транспортируемую или хранящуюся среду силикатов, фосфатов или поликарбонатов. В результате химической реакции на цинковой поверхности появляется тонкая пленка, предупреждающая развитие ржавчины.

Эффективность

Как показывает практика, достичь оптимального сплошного слоя посредством нанесения изоляционного покрытия практически невозможно. Различные виды материалов обладают неодинаковой диффузной проницаемостью, что обуславливает разное качество обработки трубопроводов от окружающей среды. Кроме того, в процессе строительства и укладки на покрытии образуются вмятины, трещины и прочие дефекты. Сквозные повреждения пассивной защиты – наиболее опасны, так как в этих местах активно идет процесс грунтовой коррозии.

Поскольку указанный метод малоэффективен для полной безопасности труб, дополнительно используется активная защита газопровода от коррозии. Она основана на управлении электрохимическими процессами, имеющими место на рубеже трубного металла и грунтового электролита. Подобный подход называется комплексной защитой. В активной фазе предусмотрена катодная поляризация, способствующая уменьшению скорости растворения металла по мере подвижки потенциала коррозии к отрицательному показателю, в большую сторону от естественного параметра.

Преимущества и недостатки протекторной защиты

Преимуществами такого метода являются:

  • простота, автономность и экономичность благодаря отсутствию источника тока и использованию магниевых, алюминиевых или цинковых сплавов;
  • возможность формирования одиночных или групповых установок;
  • возможность применения протекторной защиты, как для проектируемых объектов, так и для уже эксплуатируемых конструкций;
  • организация защиты практически в любых условиях, где невозможно или нецелесообразно сооружать источники тока;
  • при правильном использовании система может работать достаточно долго без всякого обслуживания;
  • безопасность и возможность применения на взрывоопасных объектах (ввиду малости напряжений).

Но у такого вида защиты от ржавчины есть свои недостатки:

  1. Ограниченность применения способа в плохо проводящих ток средах.
  2. Безвозвратные потери протектора.
  3. Возможность загрязнения прилегающих территорий.

Катодная защита от коррозии

Катодная электрохимическая защита от коррозии применяется тогда, когда защищаемый металл не склонен к пассивации. Это один из основных видов защиты металлов от коррозии. Суть катодной защиты состоит в приложении к изделию внешнего тока от отрицательного полюса, который поляризует катодные участки коррозионных элементов, приближая значение потенциала к анодным. Положительный полюс источника тока присоединяется к аноду. При этом коррозия защищаемой конструкции почти сводится к нулю. Анод же постепенно разрушается и его необходимо периодически менять.

Существует несколько вариантов катодной защиты: поляризация от внешнего источника электрического тока; уменьшение скорости протекания катодного процесса (например, деаэрация электролита); контакт с металлом, у которого потенциал свободной коррозии в данной среде более электроотрицательный (так называемая, протекторная защита).

Поляризация от внешнего источника электрического тока используется очень часто для защиты сооружений, находящихся в почве, воде (днища судов и т.д.). Кроме того данный вид коррозионной защиты применяется для цинка, олова, алюминия и его сплавов, титана, меди и ее сплавов, свинца, а также высокохромистых, углеродистых, легированных (как низко так и высоколегированных) сталей.

Внешним источником тока служат станции катодной защиты, которые состоят из выпрямителя (преобразователь), токоподвода к защищаемому сооружению, анодных заземлителей, электрода сравнения и анодного кабеля.

Катодная защита применяется как самостоятельный, так и дополнительный вид коррозионной защиты.

Главным критерием, по которому можно судить о эффективности катодной защиты, является защитный потенциал. Защитным называется потенциал, при котором скорость коррозии металла в определенных условиях окружающей среды принимает самое низкое (на сколько это возможно) значение.

В использовании катодной защиты есть свои недостатки. Одним из них является опасность перезащиты. Перезащита наблюдается при большом смещении потенциала защищаемого объекта в отрицательную сторону. При этом выделяется. В результате – разрушение защитных покрытий, водородное охрупчивание металла, коррозионное растрескивание.

Как увеличить эффективность протекторов?

Чаще всего протекторные композиции применяются совместно с лакокрасочными составами, имеющими антикоррозийные свойства. Лакокрасочная защита самостоятельно не дает нужного эффекта, но при сочетании с протектором:

  • позволяет устранить изъяны покрытия металлического сооружения, которые возникают в процессе эксплуатации (вспучивание, отслоение, набухание металла, появление трещин и пр.);
  • снижает расход протекторных составов, увеличивая срок службы (при довольно высокой стоимости защитных сплавов это значимый эффект);
  • обеспечивает равномерное распределение защитного тока по поверхности металлического трубопровода.

Конечно, на эксплуатируемое судно или резервуар нанести лакокрасочный состав довольно сложно. В этом случае лучше отказаться от его применения, а использовать только протекторы.

Особенности дренажа

Размещение электродренажных линий зависит от расположения объекта потенциальной угрозы. Защита магистрального газопровода от коррозии возводится на минусовую шину тяговой подстанции либо на железнодорожные рельсы. В первом случае подключение может быть прямого или поляризованного действия.

Прямое дренирование уместно, если потенциал трубопровода выше аналогичного параметра системы отвода блуждающих токов. При обустройстве электродренажа на рельсах, подключение должно быть исключительно поляризованным. Он отличается от прямого варианта тем, что в схеме предусмотрены специальные установки, позволяющие предотвратить возврат электротоков на трубы. Линия дренажа бывает в кабельном или атмосферном исполнении, на ней монтируются контрольно-измерительные приборы.

Условия применения и принцип действия протекторной защиты магистральных трубопроводов от коррозии

Российский Государственный Университет

Нефти и газа имени И.М. Губкина

Факультет проектирования, сооружения и эксплуатации

систем трубопроводного транспорта

Кафедра «Сооружение и ремонт газонефтепроводов и хранилищ»

Курсовая работа

на тему: «Протекторная защита магистральных трубопроводов от коррозии»

Выполнила: студентка группы ТС-04-5

Проверил: Орехов В.В.

Москва

Г.

Содержание

Почвенная коррозия. 3

1. Условия применения и принцип действия протекторной защиты магистральных трубопроводов от коррозии. 5

2. Протекторные установки. 7

2.1. Металлы и сплавы, применяемые для изготовления протекторов. 7

2.1.1. Магниевые сплавы.. 8

2.1.2. Алюминиевые сплавы.. 12

2.1.3. Цинковые сплавы.. 13

2.2. Заполнители. 16

2.3. Конструкция протекторов. 16

2.4. Устройство протекторной установки. 19

3. Монтаж протекторных установок. 21

4. Эксплуатация протекторных установок. Пусконаладочные работы на средствах и установках протекторной защиты.. 26

5. Расчет протекторной защиты.. 27

6. Контроль качества работ. 30

7. Мероприятия по охране окружающей среды.. 33

Список литературы.. 36

Введение

Одно из самых опасных разрушающих явлений для стального трубопровода является – коррозия, в некоторых зонах она может достигать 2-4 мм/год. В связи с этим строительство магистрального трубопровода обязательным образом включает в себя мероприятия по защите сооружения от коррозии, а именно – его изоляции. Изоляция трубопровода бывает пассивная (нанесение изоляционного покрытия на заводе или на трассе) и активная (электрохимическая защита). Причем пассивная изоляция действует с начала эксплуатации трубопровода, а активная включается через некоторое время в зависимости от агрессивности почвы.

В данной курсовой работе подробно рассмотрен один из способов электрохимической защиты трубопровода от почвенной коррозии, – протекторная защита.

Почвенная коррозия

Под коррозией металлических трубопроводов понимается самопроизвольное разрушение их под действием различных факторов химического или электрохимического характера, определяемых окружающей трубопровод средой.

Химическая коррозия – самопроизвольное окисление металла под воздействием окружающей среды токонепроводящей среды. При этом продукты коррозии образуются непосредственно на участке поверхности металла, подвергающегося разрушению.

Электрохимическая коррозия – коррозия металлов в электолитах, сопровождающаяся образованием электрического тока. При этом взаимодействие металла с окружающей средой разделяется на анодный и катодный процессы, протекающие на различных участках поверхности раздела металла и электролита.

Почвенная коррозия относится к электрохимической коррозии, однако ей присущи особенности:

1) связь влаги с окружающей средой:

– физико-механическая связь (свободная вода в порах грунта);

– физико-химическая связь (влага адсорбированная на поверхности грунта или металла);

– химическая (гидратированная) влага, входящая в химическое соединение Fe∙nH2;

2) неоднородность структуры и состава грунта, как в микро-, так и в макромасштабах;

3) почти полное отсутствие перемешивания твердой фазы грунта (замедление процесса коррозии во времени);

4) неодинаковый доступ кислорода воздуха к поверхности металла.

Основные причины возникновения коррозионных элементов на трубопроводе

Условия возникновения коррозии являются:

– наличие разнородности грунтовых участков, имеющих различные потенциалы;

– наличие разнородных грунтовых участков;

– наличие средств проводящих электрический ток.

Причины возникновения коррозионных элементов на трубопроводе:

1) микронеоднородность состава металла (присутствие механических примесей в металле труб).

2) Наличие окалины на поверхности металла (микронеоднородность состояния поверхности металла).

3) Наличие продольных и поперечных сварных швов, являющихся наиболее опасными участками в трубопроводах.

4) Различные напряженные состояния поверхности металла (растянутые участки имеют менее отрицательный потенциал).

5) Различная глубина заложения трубопровода.

6) Чередование грунтов с различными физико-химическими свойствами.

7) Температура. С увеличением температуры происходит увеличение протекания анодных процессов, т.е. увеличивается скорость коррозии.

Условия применения и принцип действия протекторной защиты магистральных трубопроводов от коррозии

Протекторные установки предназначены:

– для защиты от почвенной коррозии участков большой протяженности, удаленных от источников электроснабжения, где нецелесообразно применение катодной защиты внешним током;

– на участках, защищенных СКЗ, – в местах неполной защиты, для обеспечения необходимого защитного потенциала;

– для защиты от почвенной коррозии патронок (кожухов) на переходах через железные и автомобильные дороги;

– на участках блуждающих токов – в качестве земляных микродренажей.

Протекторы также устанавливают на изолирующих фланцах для снятия анодных зон, на электрических перемычках при совместной защите подземных сооружений для устранения электрохимического взаимодействия между ними, для защиты металлических подземных емкостей и др.

Средний срок службы протектора – 5-10 лет.

Таким образом, положительные стороны данного способа ЭХЗ:

Отрицательные стороны – снижение эффективности при значительном удельном сопротивлении грунта, окружающего протектор, и использование дефицитных материалов.

Рис.1. Принципиальная схема протекторной установки:

1 – трубопровод; 2 – точка дренажа; 3 – изолированный соединительный провод;

Протекторная защита металлов от коррозии — особенности

Как создать такую защиту?

Как обеспечивать протекторную защиту

Покрытие труб посредством специальных составов является задачей не только производителя, и в процессе применения конструкции обеспечение защитных свойств тоже должно быть выполнено. Всего есть несколько методов защиты металлической поверхности от воздействия агрессивной среды:

  • Обработка химического типа.
  • Покрытие стенок особенными составами.
  • Защита от токов блуждающего типа.
  • Подведение анода или катода.

Интересно, что способ протекторной защиты трубопроводов от коррозии будет пользоваться популярностью в организации, осуществляющих установку и эксплуатирующих трубопроводный вид транспорта.

Пассивные и активные методы

Защита от коррозии является целым комплексом мероприятий, которые проводятся предприятиями. Пассивные способы защиты будут предполагать выполнение таких работ:

  • На стадии установки между грунтом и трубопроводом оставляют воздушный зазор, который препятствует попаданию грунтовой воды, в том числе в составе с щелочными и кислотными примесями.
  • Покрытие специальными составами, назначение которых распространяется от агрессивных почвенных воздействий.
  • Обработка металлов составами химического типа, с появлением тонкой пленки.

Активные методы защиты предусматривают применение тока и ионный обмен на базе химических реакций, за счет чего применяется:

  • Защита подземных трубопроводов от коррозии изготовлением электродренажной системы для изоляции трубопроводного транспорта от токов блуждающего типа.
  • Защита анодом от разрушений поверхностей из металла.
  • Катодная защита для того, чтобы увеличивать сопротивление оснований из металла.

Только с учетом всех методов, которые препятствуют образование ржавчины на металле, и будет увеличен срок эксплуатации конструкций. Антикоррозионная защита трубопровода должна быть выполнена комплексно.

Плюсы применения протекторов

Сущность протекторной защиты металлов от коррозии в том, что способ дает множество плюсов. Защита труб таким способом проводится при добавлении ингибитора. Такой материал с отрицательным электрическим зарядом. Под воздействием масс воздуха он растворится, а конструкция останется целой и не подвергнется ржавлению. Протекторная антикоррозионная защита используется, чтобы продлить срок эксплуатации строительных конструкций, отопительных систем и водоснабжения, а еще магистрального и промыслового транспорта трубопровода. Использование электрохимического типа защиты позволяет устранять причины большого количества видов коррозии. Такая антикоррозийная защита является неплохим решением даже для тех предприятий, у которых нет финансовых возможностей по обеспечению 100%-ной защиты от неконтролируемого процесса.

Для обеспечения грамотности подхода нужно:

  1. Протекторы, сделанные из алюминия, применять в средах морских вод и шельфах около берега.
  2. В средах с малой электропроводимостью применять магниевые протекторы. Но все же они не подойдут для обработки внутреннего покрытия резервуаров, отстойников нефти в связи с тем, что они имеют достаточно низкий уровень взрывоопасности.
  3. Применять протекторы для защиты среды от сред с пресной водой.
  4. Протекторы, сделанные на базе цинка, являются безопасными, и их можно использовать для взрывоопасных и пожароопасных производств.

Антикоррозионной протекторной защите можно добавить следующий ряд преимуществ:

  • Недостаточно денег и производственной мощности у предприятия не будет препятствием для ее выполнения.
  • Возможность защищать конструкцию малого размера.
  • Если трубы покрыты материалами для тепловой изоляции, то эта защита будет приемлемой.

Причины коррозии извне и внутри труб

От коррозии металла страдает как внутренняя, так и внешняя поверхность стенок труб. Коррозия извне труб возникает вследствие контакта металла с почвой, поэтому её иногда называют почвенной коррозией. Растворы солей, которые содержатся в почве, есть жидкими электролитами, а поэтому они разрушают структуру металла при длительном взаимодействии с ним. Как особую характеристику почвы выделяют её коррозионную активность, которая находится в обратно пропорциональной связи с электрическим сопротивлением почвы, то есть чем выше электрическое сопротивление, тем меньше коррозионная активность почвы, и наоборот – чем ниже электрическое сопротивление почвы, тем выше её коррозионная активность. Благодаря тому, что известна эта зависимость, специалисты могут определять коррозионную активность грунтов, измерив всего лишь уровень их электрического сопротивления. Коррозия внутри труб возникает от коррозийных свойств самой воды. Вода с низким водородным показателем (pH) и высоким содержанием кислорода, сульфатов, хлоридов и растворенной углекислоты быстро приводит к корродированию внутренней поверхности стенок металлических труб.

О видах коррозии

Всего существует несколько разновидностей коррозии металлических труб:

Читайте также: Назначение режимов резания при токарной обработке

  • поверхностная, распространяющаяся по всей площади трубы;
  • местная, расположенная на отдельных участках;
  • щелевая, образовавшаяся в небольшой трещине.

Наиболее настораживает местная коррозия, так как основная масса повреждений происходит в результате ее появления. Развитие щелевой тоже распространено, но к существенным повреждениям материала она не приводит.

Процент вероятности возникновения коррозии в большую сторону отдается участкам труб, продолженных под железнодорожными переездами или под опорами линий воздушных электропередач. Скорость развития процесса коррозии колеблется от 3 до 30 мм в год.

Что такое химическая коррозия

Этот процесс возникает в неэлектропроводных средах. Ими могут оказаться газы, нефтепродукты и спиртовые соединения. При повышении температурных показателей скорость развития коррозии возрастает. Ржавчина может образовываться на цветных или черных металлах. Алюминиевые изделия под влиянием коррозионных факторов покрываются тонкой пленкой, которая после обеспечивает систему защиты и создает препятствие развитию окислительного процесса.

Медь под влиянием этого вида коррозии начинает зеленеть, при этом образованная пленка из оксида во влажной среде не всегда способствует созданию защитного барьера от ржавчины, а только в порядке исключения, когда структура металла одинакова со структурой пленки.

Сплавы могут быть восприимчивы к иному виду ржавчины, то есть присутствуют элементы, не подверженные окислению, а напротив, они восстановленные. К примеру, при повышенных температурных характеристиках и повышенном давлении восстанавливаются карбиды, но, опять же, утрачиваются нужные качества.

Об электрохимической коррозии

Утверждение о том, что электрохимическая коррозия достигается только при контактировании металлической поверхности с электролитом, ошибочно. Хватает тонкой пленки на основании материала, чтобы образовалась коррозия. Причиной этого вида ржавчины является использование поваренной или технической солей. К, примеру, если производится посыпка снега на дорогах, то страдают машины и проложенные под землей трубопроводы.

Процесс этого происхождения заключается в следующем:

  • В соединениях металлических конструкций теряются отчасти атомы, осуществляется их переход в электролитический раствор, то есть происходит образование ионов. Замещают электроны атомы, они заряжают материал отрицательными зарядами, при этом накапливаются положительные заряды в электролите.
  • Электрохимическую коррозию также вызывают блуждающие токи, которые при утечке из электроцепи уходят в растворы воды или в грунт, а после в саму структуру металла. Конкретными местами проявления ржавчины являются те участки, откуда в воду попадают блуждающие токи.

На видео: электрохимическая коррозия металлов и способы защиты.

Читайте также: Восстановление резьбы холодной сваркой

Катодная защита

Катодная защита – иной способ защиты металлических трубопроводов от коррозии, принципиально отличающийся от рассмотренных выше. В его основу положена электрохимическая теория коррозии, согласно которой коррозия связанна с гальваническими парами, что образовываются в области соприкосновения металлов с почвенной средой, а деструкция металлов происходит в местах, где из него выходит ток в окружающую среду. Следовательно, если подключить внешний источник постоянного тока и направить ток в землю через предварительно зарытые около трубопровода старые железные трубы, рельсы и другие металлические предметы, то поверхность трубопровода превратится в катод, что защитит его от деструктивного влияния гальванических пар. А отводиться от трубопровода ток должен через специальный провод к отрицательному полюсу внешнего источника. Недостаток этого способа в энергозатратности, поэтому чаще его используют как дополнительный, но не основной метод.

Внутренняя изоляция

Трубы целесообразно изолировать не только извне, но и внутри. Например, в США для стальных и чугунных труб ранее успешно применялось внутреннее цементное покрытие толщиной 3–6 миллиметров, и это на долгое время сохраняло пропускную способность трубопроводов на высоком уровне. Могут применяться цементно-песчаные растворы, лаки. Кроме этого возможно саму воду через специальную обработку лишать её коррозионных свойств.

Защита трубопровода от коррозии

Трубопроводные магистрали сегодня являются наиболее распространенным средством для осуществления доставки носителей энергии. К сожалению, у них есть существенный недостаток – они подвержены образованию ржавчины. Чтобы избежать появления коррозии на магистральных трубопроводах, выполняют катодную защиту. В чем же заключается ее принцип действия?

В наши дни существует много способов защиты водопроводов от коррозии. Суть их проста: металл, из которого изготовлены трубы, вступает в реакцию с определенными растворами и веществами. Результатом процесса становится образование небольшой защитной пенки.

Специалистами выделяются следующие методы защиты трубопроводов от коррозии:

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты.

Восстановление покрытия трубопровода, расположенного под землей, или днища морского судна – процесс достаточно трудоемкий и дорогой, а в некоторых случаях и невозможный. Благодаря электрохимической защите изделие будет надежно защищено от коррозии: покрытия подземных трубопроводов, днищ судов, всевозможных резервуаров не будут разрушаться.

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации. Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных. После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.

Анод требует периодической замены, так как со временем происходит его разрушение.

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие – выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной.

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание.

Протекторная защита

Вид катодной защиты, в процессе которого к защищаемому объекту подсоединяют металл с более высоким электроотрицательным потенциалом. При этом разрушается не металлоконструкция, а протектор. Через определенный промежуток времени протектор корродирует и его потребуется заменить на новый.

  • Эффект от протекторной защиты будет заметен только в том случае, если переходное сопротивление между протектором и окружающей средой незначительно.
  • У каждого протектора есть свой радиус защитного действия – предельно возможное расстояние, на которое можно удалить протектор без утраты защитного эффекта. Протекторную защиту применяют, когда ток к объекту подвести трудно, дорого или просто невозможно.
  • С помощью протекторов защищают объекты, находящиеся в нейтральных средах (море, реке, воздухе, почве и т.д.).
  • Материалом для изготовления протекторов служит магний, цинк, железо, алюминий. Металлы в чистом виде не смогут стать эффективной защитой для конструкций, поэтому, изготавливая протекторы, их дополнительно легируют.

Для изготовления железных протекторов используют углеродистые стали или чистое железо.

Анодная защита

Используется для титановых конструкций, объектов из низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Метод применяют в хорошо электропроводной коррозионной среде.

При анодной защите происходит сдвиг потенциала защищаемого металла в более положительную сторону. Смещение будет длиться до тех пор, пока не достигнется инертное устойчивое состояние системы. К преимуществам анодной электрохимической защиты можно отнести не только существенное торможение скорости коррозии, но и то, что продукты коррозии не оказываются в производимом продукте и среде.

  • Существует несколько способов реализации анодной защиты: можно сдвинуть потенциал в положительную сторону с помощью источника внешнего электротока или ввести в коррозионную среду окислители, которые способны повысить эффективность катодного процесса на металлической поверхности.
  • Анодная защита с применением окислителей по защитному механизму имеет много общего с анодной поляризацией.
  • При использовании пассивирующих ингибиторов с окисляющими характеристиками (бихроматов, нитратов и т.д.), защищаемая металлическая поверхность под воздействием возникшего тока становится пассивной. Однако эти вещества способны сильно загрязнять технологическую среду.
  • Если ввести в сплав добавки, реакция восстановления деполяризаторов, которая происходит на катоде, пройдет не с таким большим перенапряжением, как на защищаемом металле.
  • При прохождении электротока через защищаемую конструкцию потенциал сдвигается в положительную сторону.
  • В состав установки для анодной электрохимической защиты входит источник внешнего электротока, электрод сравнения, катод и защищаемая конструкция.

Для эффективности метода в той или иной среде используют легкопассивируемые металлы и сплавы. Кроме этого требуется высокое качество выполнения соединительных элементов и постоянное нахождение электрода сравнения и катода в растворе.

Подход к проектированию схемы расположения катодов должен быть индивидуальным для каждого случая.

Электрохимическую анодную защиту нержавеющих сталей используют для хранилищ серной кислоты, аммиачных растворов, минеральных удобрений, различных сборников, цистерн, мерников.

Анодную защиту используют, чтобы предотвратить коррозию ванн химического никелирования и теплообменных установок в изготовлении искусственного волокна и серной кислоты.

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление.

  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж – это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света.
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод.
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении – от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу.
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный – к рельсам электрифицированного транспорта, а не к анодному заземлению.
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

Порядок проведения работ по антикоррозионной защите трубопроводов

Металлические трубы имеют множество преимуществ, но во время их эксплуатации каждый может столкнуться с одной проблемой – коррозией. Коррозия труб приводит к сокращению срока их службы и бесполезной трате огромной массы металла, особенно если речь идет о стальных трубах. В связи с ней происходят аварии и утечки воды на водопроводных линиях, из-за нее увеличивается шероховатость внутренней поверхности труб, что сопровождается возникновением дополнительного сопротивления, падением напора воды и в конечном итоге увеличением затрат на её подачу. Иными словами, коррозия металла создает необходимость в дополнительных строительных и эксплуатационных затратах в системах водоснабжения. Именно поэтому борьбе с коррозией в водопроводной практике уделяется особое внимание.

Причины коррозии извне и внутри труб

От коррозии металла страдает как внутренняя, так и внешняя поверхность стенок труб. Коррозия извне труб возникает вследствие контакта металла с почвой, поэтому её иногда называют почвенной коррозией. Растворы солей, которые содержатся в почве, есть жидкими электролитами, а поэтому они разрушают структуру металла при длительном взаимодействии с ним. Как особую характеристику почвы выделяют её коррозионную активность, которая находится в обратно пропорциональной связи с электрическим сопротивлением почвы, то есть чем выше электрическое сопротивление, тем меньше коррозионная активность почвы, и наоборот – чем ниже электрическое сопротивление почвы, тем выше её коррозионная активность. Благодаря тому, что известна эта зависимость, специалисты могут определять коррозионную активность грунтов, измерив всего лишь уровень их электрического сопротивления. Коррозия внутри труб возникает от коррозийных свойств самой воды. Вода с низким водородным показателем (pH) и высоким содержанием кислорода, сульфатов, хлоридов и растворенной углекислоты быстро приводит к корродированию внутренней поверхности стенок металлических труб.

Протекторная защита трубопроводов от коррозии

Такой способ является одним из видов катодной защиты материала изделия и считается очень высокой, а затраты на ее проведение сравнительно небольшие.

Метод заключается в присоединении металла с более электроотрицательным материалом.

Протекторная защита (гальваническая) используется при невозможности подведения к конструкции электрического тока по различным причинам.

Каждый протектор образует свой радиус действия, при котором его работа защищает металл.

Сами протекторы изготавливаются из легированных материалов: железа, алюминия или цинка.

Внешняя изоляция

Первым и важнейшим способом есть внешняя изоляция. Кроме антикоррозионных функций она уменьшает теплопотери и обеспечивает механическую защиту. Для создания изоляции могут быть использованы разные материалы, коротко рассмотрим возможные варианты. 1. Битумная изоляция.

Состоит из слоя полиэтилена, который защищается битумным покрытием. Иногда может присутствовать стеклохолст, обернутый вокруг труб. Может использоваться для трубопроводов, которые размещаются в глинистых, песчаных и каменистых грунтах.
2. Полиэтиленовая антикоррозионная изоляция.
Состоит из многослойного покрытия, специально предназначена защищать трубопроводы от коррозии.
3. Пенополиуретановая изоляция.
Бывает двух видов. Первый – применение пенополиуретановых скорлуп, используется для наземных и подземных трубопроводов при канальном и бесканальном проведении труб. Второй – создание пенополиуретановой оболочки путем впрыскивания жидкого ППУ между трубой и предварительно созданной полиэтиленовой изоляцией, после чего ППУ отвердевает и превращается в целостную оболочку.

Существует ещё изоляция стекловатой и минеральной ватой, однако эти варианты изначально предназначены для уменьшения потерь тепла и предупреждения создания конденсата, а не для защиты от коррозии, поэтому они и используются преимущественно для изоляции трубопроводов тепловых сетей. Возможна вариация толщины изоляционного слоя. В каждом конкретном случае толщина рассчитывается в зависимости от функциональной нагрузки на трубопровод, важности водопроводной линии и коррозийной активности почвы, в которой она размещена – чем выше эта активность, тем толще должен быть изоляционный слой.

Нанесение антикоррозийного покрытия

Способ нанесения антикоррозийного покрытия зависит от выбранного материала покрытия и требует индивидуального подхода. Однако существуют единые нормы, которые применяются в любом случае:

  1. Поверхность подготавливают: очищают от окалин, ржавчины, старого защитного покрытия, краски;
  2. Зачищают очищенную поверхность;
  3. Поверхность обезжиривают с помощью специальных составов;
  4. Очищают с помощью песко- или дробеструйной машины с мелким песком;
  5. Обрабатывают моющими средствами для очищения глубоких слоев изделия;
  6. Промывают поверхность;
  7. Высушивают поверхность перед нанесением основного защитного покрытия;
  8. Каждый слой наносимого защитного покрытия тщательно высушивается.

Чаще всего применяется антикоррозийная покраска труб, так как этот материал имеет широкое распространение, демократичную цену, легок в нанесении (распыление или нанесение валиком) и долговечен.

Применяемое оборудование для антикоррозийной обработки труб

В зависимости от вида защитного покрытия, применяется специальное оборудование, например, установка электродуговой металлизации (позволяет наносить металлические покрытия), установки для плазменного напыления, установки для «холодного» цинкования стальных изделий (для лакокрасочных изделий), установки для напыления (грунтовые и лакокрасочные вещества), валик.

Обязательно соблюдение техники безопасности при производстве работ. Специалисты, выполняющие обработку должны находиться в специальной защитной форме.

Катодная защита

Катодная защита – иной способ защиты металлических трубопроводов от коррозии, принципиально отличающийся от рассмотренных выше. В его основу положена электрохимическая теория коррозии, согласно которой коррозия связанна с гальваническими парами, что образовываются в области соприкосновения металлов с почвенной средой, а деструкция металлов происходит в местах, где из него выходит ток в окружающую среду. Следовательно, если подключить внешний источник постоянного тока и направить ток в землю через предварительно зарытые около трубопровода старые железные трубы, рельсы и другие металлические предметы, то поверхность трубопровода превратится в катод, что защитит его от деструктивного влияния гальванических пар. А отводиться от трубопровода ток должен через специальный провод к отрицательному полюсу внешнего источника. Недостаток этого способа в энергозатратности, поэтому чаще его используют как дополнительный, но не основной метод.

Электрохимический способ защиты труб от коррозии

Данная защита относится к активному способу борьбы с коррозией трубопроводов. Суть метода состоит в том, что к защищаемому изделию подводится постоянный ток, или устанавливаются протекторы. Ток на поверхности конструкции смещает поляризацию и анодные участки становятся катодными, в итоге процессы коррозии останавливается. Отдельным видом электрохимической защиты является электродренажная, при которой устанавливается дренажная система и электро экраны, производится изоляция фланце.

Удаление водопроводных труб от электротранспортных путей

Способствовать корродированию металлических труб может воздействие блуждающих токов, которым особенно подвергаются трубы, проложенные возле путей внутризаводского либо городского электротранспорта. Этого избегают двумя путями – удаляя водопроводные трубы от электротранспортных путей и придерживаясь известных правил построения рельсовых дорог для электротранспорта.

Перечисленные методы защиты водопроводных труб от коррозии обычно используются комплексно. В этих методах обобщён опыт многолетней практики и разнообразных технических исследований, поэтому их эффективность не только доказана, но и проверена жизнью.

Особенности использования антикоррозионного покрытия стальных труб «Уризол»

Одним из самых распространенных материалов в борьбе с ржавчиной трубопроводов является двухкомпонентный материал на основе полимочевины – Уризол. Это вещество активно борется с почвенной и атмосферной коррозией. Кроме общей поверхности конструкции, данным составом просто обрабатывать фитинги, крановые узлы, соединительные детали трубопроводных магистралей.

Первый компонент – Уреапол, который наносится как основа и по сути является смолой, второй компонент — Уреанат, который является активным веществом.

Нанесение Уризола

Как и другие защитные составы, Уризол в несколько слоев для достижения необходимой толщины слоя. Предварительно поверхность должна быть подготовлена: очищена от грязи, наросшей ржавчины, пыли и отслоившейся краски, если такая имеется. Поверхность вымывается чистящими растворами и обезжиривается углеводородными растворителями.

Специалист смешивает необходимые компоненты в специальных пропорциях для качественной работы покрытия. Само нанесение происходит с помощью специальной распылительной установки, когда состав попадает на защищаемую поверхность он находится в жидком состоянии, переходит в гелеобразное и твердеет. После затвердевания, измеряется толщина полученного слоя, если она недостаточна для длительной защиты, процедура повторяется до нарастания необходимого слоя. После достижения технологической толщины составу дается время на окончательную усушку в 24 часа – защита внутренней поверхности стальных труб от коррозии готова.

Состав должен хранится в стальных бочках в герметичной емкости для сохранения его свойств, а процесс распыления производится при температуре 60-70 С.

Преимущества защитного состава Уризол

  • высокий уровень полимеризации без специальных катализаторов;
  • незначительная чувствительность к температурным и влажностным воздействиям;
  • быстрое высыхание слоев, что предотвращает появление подтеков и неровностей;
  • длительный срок службы – при нанесении квалифицированными специалистами достигает 30 и более лет;
  • высокая экологичность и безвредность для человека;
  • низкая пожароопасность, которая обеспечивается отсутствием примесей.

Характеристики Уризола

Характеристика Свойство
Время высыхания, мин ≤ 10
Диэлектрическая сплошность. Отсутствие пробоя при электрическом напряжении, кВ/мм ≥ 5
Прочность при ударе, Дж

— при температуре (20±5)ºС;

— при температуре (40±3)ºС;

— при температуре минус (40±3)ºС

Виды защиты

На сегодняшний день существует несколько различных методов для обработки подземных труб отопления от ржавчины и коррозии. Все они основаны на принципе специальной обработки, в процессе которой металл, из которого сделаны резервуары, вступает в реакцию с вводимыми веществами и растворами. В результате таких действий образуется специальная пленка, которая и обеспечивает защиту.

Можно выделить несколько основных видов антикоррозийных способов защиты:

  • обработка жидкости посредством реагентов химического характера;
  • обработка стенок;
  • блуждающий ток;
  • катодная;
  • анодная.

Обработка жидкости

Жидкость, которая протекает по трубопроводу, может иметь некоторые агрессивные качества. Агрессивный состав воды может стать следствием содержания в ней карбонатов, бикарбонатов или кислорода, которые становятся причиной того, что металл покрывается ржавчиной.

Выполнить качественную очистку стенок подземных труб или прочистить их полностью достаточно сложно технически. Основной задачей химической обработки воды является превращение ее состава из агрессивного в слабокальцирующий. Такая обработка подземных труб отопления от ржавчины зачастую сводиться к добавлению в воду соды, кальция или карбоната натрия.

На тех участках водопроводов, в которых вода может распределяться по отдельным точкам водозабора, ее дальнейшая обработка осуществляется при помощи добавления полифосфатов.

Антикоррозийная защита оцинкованных подземных резервуаров осуществляется при помощи добавления силикатов, фосфатов и поликарбонатов. Таким образом, на внутренней поверхности оцинкованных труб появляется специальная пленка, препятствующая возникновению коррозии.

Обработка стенок

Обработка стенок используется в качестве их защиты от коррозии уже много лет. Для выполнения такого комплекса мероприятий покрытие наносится на внешнюю или внутреннюю стенку подземной трубы.

Благодаря гальванике на поверхности формируется активная или пассивная пленка высокой прочности, которая не позволяет агрессивной среде проникнуть в глубокие слои металла. Эффект от таких действий может легко сохраняться на достаточно длительный период.

Как правило, на поверхность изделия наносится другой металл. Чаще всего для этого используется цинк, на который коррозия не воздействует. На поверхность металла может наноситься краска, лак или эмаль, которые также выступают в роли эффективной обработки газопроводов.

Для достижения максимального эффекта при борьбе с ржавчиной часто используются сплавы таких металлов как цинк или магний. Специалисты утверждают, что цинкование труб представляет собой самый популярный из всех существующих на сегодняшний день методов обработки.

Блуждающий ток

Блуждающий ток представляет собой ток, который образуется в грунтах при дисперсии электрифицированных путей. Энергия поступает к точке, являющейся катодом, и выходит в точке, которая является анодом.

В ходе процесса происходит электролиз, который может стать причиной появления ржавчины и повреждения резервуара. В этом случае, антикоррозийной изоляцией подземных трубопроводов является дренаж электрического характера.

Кабеля с низким сопротивлением подключаются к источнику тока в специально определенных местах.

Индуцированный ток

Катодная антикоррозийная протекция подземных резервуаров основана на использовании электрического тока, который подается в постоянном режиме и не дает пленке для защиты металла разрушаться.

Этот способ выполняется за счет использования кабеля с низким электросопротивлением, но при этом отличной изоляцией. Сам трубопровод в этом случае выполняет роль катода и таким образом защищается от возможных процессов коррозии.

Расходуемый анод

Еще одним довольно эффективным видом защиты от блуждающих токов является анодная химзащита. Заглубленный магниевый блок выполняет функции анода в коррозийной среде. Благодаря медленному разложению магния происходит изоляция магистральных стальных трубопроводов от подземных блуждающих токов. Такой вид защиты чаще всего используется для защиты изделий ограниченной длины или для резервуаров, которые выполнены из стали.

Как правило, анод помещается в мешок из хлопка или джута, который в свою очередь погружается в глинистую смесь. Основной задачей такой упаковки является обеспечение равномерности расхода анода, а также сохранения необходимого уровня влажности.

Такая система предотвратит появление пленки, которая может затруднить разложение анода.

Можно отметить, что лучшим способом защиты внутренней и внешней поверхности труб от возникновения коррозийных процессов будет использование материалов, которые менее всего им подвержены. И, тем не менее, даже на таких материалах в силу определенных причин могут возникать очаги коррозии и повреждения различного рода. И поэтому, лучше всего уже в процессе использования труб использования труб использоваться один из самых подходящих из используемых на сегодняшний день методов защиты.

Читайте также:
Как победить ржавчину: основные способы защиты металла от коррозии
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: