Защита бетонных и железобетонных конструкций от коррозии
4 Приказом Федерального агентства по техническому регулированию и метрологии от 5 октября 2017 г. N 1361-ст межгосударственный стандарт ГОСТ 31384-2017 введен в действие в качестве межнационального стандарта Российской Федерации с 1 марта 2018 г.
6 ПЕРЕИЗДАНИЕ. Май 2018 г.
Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячном информационном указателе “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
1 Область применения
Настоящий стандарт устанавливает требования, учитываемые при проектировании защиты от коррозии бетонных и железобетонных конструкций в зданиях и сооружениях, как вновь возводимых, так и реконструируемых, предназначенных для эксплуатации в агрессивных средах с температурой от минус 70°С до плюс 50°С.
В настоящем стандарте определены технические требования к защите от коррозии бетонных и железобетонных конструкций для срока эксплуатации 50 лет. Для бетонных и железобетонных конструкций со сроком эксплуатации 100 лет и конструкций зданий и сооружений класса КС-3, имеющих повышенный уровень ответственности по ГОСТ 27751, оценка степени агрессивности повышается на один уровень. Если оценка степени агрессивности среды не может быть увеличена (например, для сильноагрессивной среды), защита от коррозии выполняется по специальному проекту.
Проектирование реконструкции зданий и сооружений должно предусматривать анализ коррозионного состояния конструкций и защитных покрытий с учетом вида и степени агрессивности среды в новых условиях эксплуатации.
Требования настоящего стандарта следует учитывать при разработке других нормативных документов, а также технических условий, по которым изготовляются или возводятся конструкции конкретных видов, для которых устанавливают нормируемые показатели качества, обеспечивающие технологическую и техническую эффективность, а также при разработке технологической и проектной документации на данные конструкции.
Требования настоящего стандарта не распространяются на проектирование защиты бетонных и железобетонных конструкций от коррозии, вызываемой радиоактивными веществами, а также на проектирование конструкций из специальных бетонов (полимербетонов, бетонополимеров, кислото-, жаростойких бетонов и т.п.).
2 Нормативные ссылки
ГОСТ 9.602-2005 Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии
ГОСТ 12.3.002-2014 Система стандартов безопасности труда. Процессы производственные. Общие требования безопасности
ГОСТ 12.3.005-75 Система стандартов безопасности труда. Работы окрасочные. Общие требования безопасности
ГОСТ 21.513-83 Система проектной документации для строительства. Антикоррозионная защита зданий и сооружений. Рабочие чертежи.
ГОСТ 969-91 Цементы глиноземистые и высокоглиноземистые. Технические условия
ГОСТ 4245-72 Вода питьевая. Методы определения содержания хлоридов
ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия
ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний
ГОСТ 8269.1-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы химического анализа
ГОСТ 8736-2014 Песок для строительных работ. Технические условия
ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости
ГОСТ 10178-85 Портландцемент и шлакопортландцемент. Технические условия
ГОСТ 10884-94 Сталь арматурная термомеханически упрочненная для железобетонных конструкций. Технические условия
ГОСТ 12004-81 Сталь арматурная. Методы испытания на растяжение
ГОСТ 22266-2013 Цементы сульфатостойкие. Технические условия
ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия
ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические условия
ГОСТ 25485-89 Бетоны ячеистые. Технические условия
ГОСТ 25820-2014 Бетоны легкие. Технические условия
ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия
ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения
ГОСТ 30515-2013 Цементы. Общие технические условия
ГОСТ 31108-2016 Цементы общестроительные. Технические условия
ГОСТ 31383-2008 Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний
ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния
ГОСТ 31938-2012 Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия
ГОСТ 32016-2012 Материалы и системы для защиты и ремонта бетонных конструкций. Общие требования
ГОСТ 32017-2012 Материалы и системы для защиты и ремонта бетонных конструкций. Требования к системам защиты бетона при ремонте
ГОСТ 32496-2013 Заполнители пористые для легких бетонов. Технические условия
ГОСТ 33290-2015 Материалы лакокрасочные, применяемые в строительстве. Общие технические условия
Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по выпускам соответствующим ежемесячного информационного указателя “Национальные стандарты” за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины и определения
3.1 биодеструктор: Организм, повреждающий материал.
3.2 биоповреждение: Изменение физических и химических свойств материалов вследствие воздействия живых организмов в процессе их жизнедеятельности.
3.3 биоцид: Химическое вещество, предназначенное для подавления жизнедеятельности биодеструкторов.
3.4 влажностный режим помещений (сухой, нормальный, влажный, мокрый): Режим, устанавливаемый в зависимости от температуры и относительной влажности воздуха по действующим нормативным документам*, действующим на территории государства – участника Соглашения, с учетом максимального значения относительной влажности в температурном диапазоне.
3.5 воздействие окружающей среды: Несиловое воздействие на бетон в конструкции или сооружении, вызванное физическими, химическими, физико-химическими, биологическими или иными проявлениями, приводящими к изменению свойств бетона или состояния арматуры.
3.6 вторичная защита: Защита строительной конструкции от коррозии, реализуемая после изготовления (возведения) конструкции за счет применения мер, которые ограничивают или исключают воздействие на нее агрессивной среды. Выполняется при недостаточности первичной защиты.
3.7 зона переменного уровня воды (среды): Зона от наинизшего горизонта воды (льда для замерзающих акваторий) до уровня на 1 м выше наивысшего горизонта воды или высоты всплеска волн.
3.8 массивные малоармированные конструкции: Конструкции толщиной свыше 0,5 м и армированием не более 0,5%.
3.9 Минерализованная вода: Вода, содержащая растворенные соли в количестве более 5 г/л.
3.10 первичная защита: Защита строительных конструкций от коррозии, предусматриваемая на стадии проектирования и реализуемая при изготовлении (возведении) конструкции и заключающаяся в выборе конструктивных решений, бетона и арматуры конструкции или в создании его структуры, с тем чтобы обеспечить стойкость этой конструкции при эксплуатации в соответствующей агрессивной среде в течение всего проектного срока службы.
3.11 специальная защита: Защита, заключающаяся в осуществлении технических мероприятий, дополняющая первичную и вторичную защиту.
3.12 среда эксплуатации: Среда, характеризующаяся комплексом химических, биологических и физических воздействий, которым подвергается бетон в процессе эксплуатации и которые не учитываются как нагрузка на конструкцию в строительном расчете.
4 Общие положения
4.1 Технические решения по защите от коррозии бетонных и железобетонных конструкций, а также элементов их сопряжений должны быть самостоятельной частью проектов зданий и сооружений. В сложных случаях разработку проектов защиты следует выполнять с привлечением профильных организаций. Проектная документация в части антикоррозионной защиты зданий и сооружений должна отвечать требованиям ГОСТ 21.513.
4.2 Для предотвращения коррозионного разрушения бетона, железобетона и конструкций из них могут быть предусмотрены следующие виды защиты:
4.3 К мерам первичной защиты относятся:
– применение бетонов, стойких к воздействию агрессивной среды, что обеспечивается выбором цемента и заполнителей, подбором состава бетона, снижением проницаемости бетона, применением уплотняющих, воздухововлекающих и других добавок, повышающих стойкость бетона в агрессивной среде и защитное действие бетона по отношению к стальной арматуре, стальным закладным деталям и соединительным элементам; герметизацией швов бетонирования гидроактивными профильными жгутами и полимерными шпонками;
– выбор и применение арматуры, соответствующей по коррозионным характеристикам условиям эксплуатации;
– защита от коррозии закладных деталей и связей на стадии изготовления и монтажа сборных железобетонных конструкций, защита предварительно напряженной арматуры в каналах конструкций, изготовляемых с последующим натяжением арматуры на бетон;
Современные методы защиты железобетонных конструкций зданий и сооружений от коррозии
Рубрика: Технические науки
Дата публикации: 05.04.2016 2016-04-05
Статья просмотрена: 4101 раз
Библиографическое описание:
Жуков, Е. М. Современные методы защиты железобетонных конструкций зданий и сооружений от коррозии / Е. М. Жуков, Ю. И. Кропотов, И. А. Лугинин, Л. А. Легаева. — Текст : непосредственный // Молодой ученый. — 2016. — № 7 (111). — С. 75-78. — URL: https://moluch.ru/archive/111/27790/ (дата обращения: 03.01.2022).
Бетоны представляют собой искусственные каменные строительные материалы, получаемые в результате формирования и затвердевания рационально подобранной по составу, тщательно перемешанной и уплотненной бетонной смеси, состоящей из вяжущего вещества (цемент и др.), крупных и мелких заполнителей и воды. Кроме основных компонентов в состав бетонной смеси могут вводиться дополнительные специальные добавки. Бетоны относятся к самым массовым по применению в строительстве материалам вследствие их высокой прочности, надежности и долговечности при работе в конструкциях зданий и сооружений. После твердения бетонная смесь образует бетон (конгломерат), где часть объемов занимают поры и капилляры разного размера и в различном количестве.
Практика эксплуатации инженерных бетонных сооружений показала, что в ряде случаев под влиянием физико-химического действия жидких и газовых сред бетон может подвергаться разрушению.
Коррозия бетона возникает в результате проникания агрессивного вещества в его толщу; она особенно интенсивна при постоянной фильтрации такого вещества через трещины или поры бетона. К агрессивным воздействиям внешней среды чаще всего относят следующие: пресные и минерализованные воды, совместное действие воды и мороза, попеременное увлажнение и высушивание.
Для предотвращения коррозионного разрушения бетона и железобетона существуют следующие виды защиты:
– Первичная: защита строительных конструкций от коррозии и протечек, реализуемая на стадии изготовления (возведения) конструкции за счет свойств бетона (добавлением в бетон различных веществ) и конструктивных мер, достаточных для сохранения эксплуатационных свойств конструкций, предусмотренных проектом;
– Вторичная: защита строительных конструкций от коррозии и протечек, реализуемая после изготовления (возведения) конструкции и подразумевающая устройство оклеечной, свободномонтируемой, обмазочной, металлической и прочих видов изоляции и других мер, исключающих или препятствующих прямому контакту агрессивной среды с материалом конструкций.
К мерам первичной защиты относятся:
1) применение бетонов, стойких к воздействию агрессивной среды;
2) применение различных модифицирующих добавок, повышающих коррозионную стойкость бетонов и их защитную способность по отношению к стальной арматуре, стальным закладным деталям и соединительным элементам. Добавки могут быть пластифицирующие (увеличивающие), стабилизирующие (предупреждающие расслоение), водоудерживающие, а также регулирующие схватывание бетонных смесей, их плотность, пористость и т. д.;
3) снижение проницаемости бетонов;
4) соблюдение дополнительных расчетных и конструктивных требований при проектировании бетонных и железобетонных конструкций.
К мерам вторичной защиты относится нанесение на поверхности бетонных и железобетонных конструкций защитных материалов:
биоцидные материалы — уничтожают и подавляют грибковые образования на бетонных конструкциях (принцип действия заключается в проникновении химически активных элементов в структуру бетона и заполнении ими микротрещин и пор);
оклеечные покрытия — применяются при воздействии жидких сред (например, если бетонная свая подтапливается подземными водами), в грунтах, а также в качестве непроницаемого подслоя в облицовочных покрытиях (это могут быть рулоны нефтебитума, полиэтиленовая плёнка, полиизобутиленовые пластины и т. п.);
уплотняющие пропитки — придают бетону высокие гидрофобные свойства, резко повышают водонепроницаемость и снижают водопоглощение материала (применяются в условиях повышенной влажности и в случае необходимости обеспечения специальных санитарно-гигиенических требований);
лакокрасочные и акриловые покрытия — образуют атмосферостойкую, прочную и долговечную защиту, в том числе предотвращающую появление на поверхности грибков и микроорганизмов.
Вторичная защита применяется в случаях, если защита от коррозии не может быть обеспечена мерами первичной защиты и, как правило, требует периодического её возобновления. Антикоррозийные покрытия можно применять везде, где существует подобная необходимость для бетона. При выборе защитных средств следует учитывать особенности воздействия среды, возможные физические и химические воздействия.
Современный рынок гидроизоляционных материалов предлагает широкий спектр составов для защиты бетона, при этом каждый цементный материал выполняет определенную функцию:
Обмазочная гидроизоляция применяется для гидроизоляции бетонных, железо-, пено-, газобетонных, а также кирпичных конструкций. Толщина гидроизоляции 2–6 мм. Гидроизоляционные составы производятся в двух вариантах: жесткая цементная гидроизоляция (сухая смесь) и гибкая полимерцементная гидроизоляция (двухкомпонентный состав: сухая смесь и водная дисперсия полимера). Полимерцементная гидроизоляция применяется для гидроизоляции сооружений с повышенным трещинообразованием, подвергающихся температурным и механическим деформациям, осадке и вибрациям.
Штукатурная гидроизоляция — сухие смеси для гидроизоляции бетонных, железобетонных и кирпичных конструкций, применяются при необходимости дополнительного выравнивания поверхностей. Толщина гидроизоляции 5–50 мм.
Шовная гидроизоляция — сухие смеси для гидроизоляции стыков, швов, сопряжений, примыканий, вводов коммуникаций в статически нагруженных сборных и монолитных бетонных конструкциях.
Ремонтные смеси — цементные составы с использованием армирующего волокна, которые применяется для локального восстановления поверхностей (сколов, выбоин, трещин, эрозии) бетонных, железо-, пено-, газобетонных, кирпичных и каменных конструкций.
Водяная пробка — быстросхватывающиеся цементные составы, используемые для оперативной ликвидации напорных течей через трещины, стыки и отверстия в бетонных и железобетонных конструкциях, кирпичной и каменной кладке.
Проникающая гидроизоляция — сухие смеси для гидроизоляции бетонных и железобетонных конструкций. Такой вид цементной гидроизоляции не предназначен для гидроизоляции пенобетонных и газобетонных конструкций (из-за большого размера пор), кирпичных стен (вследствие отсутствия в кирпиче необходимых для реакции веществ). Основное отличие проникающей гидроизоляции от всех других цементных гидроизоляций: формирование водонепроницаемого покрытия не на поверхности бетона, а в его значительной толщи (до 400 мм для определенных проникающих материалов). Может использоваться на влажных поверхностях, с внутренней и внешней стороны, при положительном и отрицательном давлении воды. Действие проникающей гидроизоляции продолжается и усиливается после нанесения состава на поверхность (см. рис. 1).
Рис. 1. Проникающая гидроизоляция
Добавки в бетон — сухие смеси, используемые в качестве добавки в бетон на стадии приготовления, для повышения водонепроницаемости, морозостойкости и коррозионной стойкости бетонов и растворов. Применение гидроизоляционных добавок позволяет снизить водоцементное отношение и, как следствие, уменьшить объем пор в бетоне, повышая, таким образом, плотность, прочность, водонепроницаемость, а также долговечность бетона [2].
Окончательное решение о виде защиты и материалах для защиты от коррозии бетонных и железобетонных конструкций следует принимать на основе сравнения технико-экономических показателей различных вариантов технических решений. При технико-экономических расчетах защитных мероприятий должны быть учтены капиталовложения, средняя годовая стоимость защиты от коррозии бетонных и железобетонных конструкций и стоимость ее периодического восстановления, а также значение вынужденных потерь, вызываемых необходимостью перерыва производственного процесса на время восстановления защиты от коррозии.
Процесс коррозии — очень сложный и опасный для бетонных или железобетонных построек процесс. Поэтому к нему стоит отнестись с большим вниманием. Если пренебрегать коррозией бетона и не пытаться ее предотвратить, то любая постройка через некоторый период времени может полностью разрушиться. К счастью, на сегодняшний день существует большое количество систем защитных материалов, препятствующих этому процессу и предлагающих ряд вариантов эффективного решения задач, стоящих перед строителями и эксплуатирующими здания и сооружения организациями.
- СП 28.13330.2012 Защита строительных конструкций от коррозии.
- ГОСТ 24211–2003 Добавки для бетонов и строительных растворов.
Защита бетонных конструкций от влаги и коррозии
Бетонный камень, несмотря на свою высокую прочность, тем не менее, очень «капризен» к вредным факторам окружающей среды: перепадам температуры, воздействию влаги, циклам «замораживания-размораживания». Кроме того бетонные сооружения расположенные в промышленной зоне воспринимают на себя агрессивный газ и агрессивные химические вещества.
- Основные методы защиты бетонных и железобетонных конструкций
- Защита бетона от влаги
- Способы защиты бетонных конструкций
- Средства для защиты бетона от коррозии
- Заключение
Не приносят «здоровья» бетону биологические факторы: плесневые грибки, лишайники, мох и различные растения, проросшие в трещинах и расслоениях бетонных сооружений. Чтобы оградить бетон от вредного влияния окружающей среды применяется комплексная защита бетонных конструкций от коррозии, регламентируемая требованиями нормативного документа ГОСТ 31384-2017.
Основные методы защиты бетонных и железобетонных конструкций
Стоит заметить, что при любых строительных или ремонтных работах следует руководствоваться действующими нормативными документами, а не советами «бывалых» строителей. В плане защиты бетонных конструкций от коррозии основным документом является ГОСТ 31384-2017, который регламентирует три вида защиты:
- Первичную.
- Вторичную.
- Специальную.
В частном домостроительстве обычно применяют два вида защиты – первичную и вторичную.
В общестроительной практике, суть первичной защиты заключается в максимальном уплотнении бетона с помощью специальных добавок и вибрации залитой конструкции несколькими способами. Результатом данных мероприятий является уменьшение пористости готового сооружения и соответственно значительное уменьшение водопоглащение и водонепроницаемость.
Защита бетона от влаги
Чтобы защитить бетонные и кирпичные строения от действия влаги, нужно использовать различные гидроизоляционные средства. Особую эффективность имеют те, которые глубоко проникают в структуру материала и закупоривают его трещины и поры. О таких технологиях мы и поговорим.
Защита конструкций из бетона влагоизоляционными средствами – это очень важный этап в строительстве любого сооружения, и особую актуальность он получил именно в нашей стране, особенно в северных районах. В последнее время данное направление начало продвигаться вперёд очень быстро.
Профессионалы изучили современные способы проведения такой защиты, и в данный момент у них фактически нет не решаемых вопросов. Современные влагоизоляционные средства гарантируют успешную защиту возведённых бетонных систем и кирпичных строений от влажности и микроорганизмов, разрушающих их структуру.
Методы охраны бетонных объектов делятся на следующие разновидности:
- охрана объектов из бетона средствами, не пропускающими влагу, на основе цемента;
- охрана объектов из бетона от силового воздействия водяных масс;
- охрана бетонных сооружений от внешних климатических условий;
- реставрация бетонных сооружений до первоначального состояния;
- охрана наружной части от воздействия микроорганизмов.
Перечисленные выше методы чрезвычайно сложны. Особо стоит обратить внимание на то, что они не дадут достаточного результата каждый по отдельности.
Способы защиты бетонных конструкций
Из числа прогрессивных технологий, исключающих вторжение влаги через бетонированные части объекта, следует отметить:
- способ защиты от внедрения влаги через мельчайшие каналы;
- способ предохранения от энергичного внедрения воды в местах соединения, образованных трещинах и при неплотном бетонном покрытии;
- способ введения в конструкцию гидроактивных полиуретанов для заполнения пустых мест, появившихся расколов.
В первых двух вариантах используются изоляционные средства на базе цементного раствора. Чтобы предотвратить проникание воды через мельчайшие каналы в бетонной конструкции, самым лучшим способом будет использование изоляционных средств на основе цемента, в которые добавляют минеральные химические вещества. При взаимодействии воды и ионов кальция получаются кристаллические вещества, они закупоривают каналы очень глубоко, и влага задерживается.
Там, где влага интенсивно проникает внутрь конструкции, применяют изоляционные средства, которые очень быстро действуют. Приготавливать их надо маленькими дозами, они затвердеют в течение минуты, но не более. Для данного метода нужны хорошие знания и навыки, и поэтому этим делом должны заниматься только опытные специалисты.
Следующий способ защиты – это введение в железобетонные конструкции особых средств, наполняющих и закупоривающих все пустые места, появившиеся трещины и места соединения. Данная методика позволяет произвести изоляцию от воды конструкций, подвергающихся неизменным подвижкам либо пульсации, также она применяется в случае, если бетон заливался с нарушениями.
Ввод смеси нельзя проводить при отсутствии специальных инструментов и специалистов. Чтобы ввести смесь внутрь конструкции, пробивают буром шурфы на нужное расстояние, помещают вводные пакеры. По резиновым шлангам, выдерживающим высокую нагрузку, насосом вводится особая смесь. Она сделана на основе гидроактивных полиуретанов и, взаимодействуя с водной массой, образует пену, увеличивается в размере не менее чем в 6 раз, наполняя пустые места, расколы. Пенная эмульсия неимоверно гибкая, не разрушится от пульсации, ей не страшны значительные смещения конструкции.
Специфика данной методики в том, что невозможно предугадать объём расходуемых средств. Ввод смесей в каналы используется, как правило, совместно со способом изоляции цементными растворами, чтобы вводимые смеси распространялись внутри бетонной конструкции, а не выплёскивались обратно на поверхность.
Еще один способ защиты строительной конструкции – помещение на поверхность специального защитного слоя, который не разрушается долгий период времени, не имеющего слабых конструктивных соединений, имеющего высочайшую гибкость и способность быстро ремонтироваться. В последние годы широкую популярность стала приобретать защита бетонных конструкций от влаги мастикой. Её помещают на поверхность и разглаживают обыкновенными кистями, а сверху укрепляют двумя слоями стеклянной сетки. Главное преимущество данного материала – его эластичность и создание бесшовной поверхности.
Самыми популярными являются:
- Твердый битум: БН-3, БН-4, БН-5;
- Разжиженный битум: БН-3, БП-5, DH-1V;
- Мастика Грида МГХ-Г:
- Пенетрон;
- Гидроизоляционная битумно-каучуковая мастика;
- Мастичная битумно-полимерная гидроизоляция.
Наиболее эффективны смеси, обладающие гидрофобными свойствами. После обработки с течением времени смесь проходит на десять сантиметров в глубину, наполняя каналы, и становится плотней водяных частиц, при этом доступ кислорода остается. Чтобы сохранить конструкцию из бетона от воздействия влаги, в обязательном порядке методы защиты рекомендуется применять в совокупности.
Средства для защиты бетона от коррозии
Бетон, обладающий минимальным водопоглощением и минимальной водопроницаемостью, соответственно минимально страдает от перепадов температуры и сезонных циклов «замораживания и оттаивания». Добавки для уплотнения бетона: Sika Paver HC-1, Комплекс К-7, Хидетал – С-3 и другие.
Технический смысл вторичной защиты бетонных и железобетонных конструкций от коррозии заключается в нанесение на поверхность застывшего бетона всевозможных покрытий являющихся надежным барьером для воды, агрессивных жидкостей и газов, биологических факторов. Основные виды защиты бетонных конструкций от коррозии ГОСТ 31384-2017:
- Лакокрасочное и толстослойное мастичное покрытие: Эмаль по бетону АК-11, Темафлор 3000, Бетолакс Аква и др.
- Оклеивание поверхности гидроизоляционными материалами: Биполь, Аквазоль, Техноэласт и др.
- Обмазка штукатурными растворами.
- Отделка керамической плиткой, керамическим гранитом, искусственным и натуральным камнем, клинкерным кирпичом и т.п.
- Установка вентилируемых фасадов.
- Обработка уплотняющими пропитками глубокого проникновения: ULTRALIT HARD ECO, PoliFlo SEALER, Биозащитное средство Triora и др.
- Обработка гидрофобизирующими составами: ПЕНТА®-811, Софэксил 60-70У, ГКЖ 136-41.
Вторичная антикоррозийная защита бетонных конструкций характеризуются значительными дополнительными финансовыми затратами и необходимостью регулярного возобновления. Поэтому применяется в случаях неэффективности первичной защите.
Специальная защита бетона подразумевает эффективный комплекс работ связанных со снижением концентрации агрессивных газов и жидкостей, понижением уровня грунтовых вод, электрохимической и протекторной защитой, а также выносом вредных производственных мощностей в изолированные цеха.
Заключение
Увеличение срока службы строительных конструкций и оборудования достигается путем правильного выбора материала с учетом его стойкости к агрессивным средам, действующим в производственных условиях. Кроме того, необходимо принимать меры профилактического характера.
К таким мерам относятся герметизация производственной аппаратуры и трубопроводов, хорошая вентиляция помещения, улавливание газообразных и пылевидных продуктов, выделяющихся в процессе производства; правильная эксплуатация различных сливных устройств, исключающая возможность проникновения в почву агрессивных веществ; применение гидроизолирующих устройств и др.
Коррозия бетона: виды, методы защиты
Бетон – искусственный камень, при производстве которого используются: цемент, мелкий заполнитель – песок, крупный заполнитель – щебень, вода и добавки, сообщающие пластичной смеси и готовому продукту требуемые свойства. Под воздействием неблагоприятных внешних факторов или вследствие внутренних химических реакций бетон подвергается коррозии – процессу разрушения структуры с ухудшением технических характеристик конструкции вплоть до полного ее выхода из строя. Во избежание аварийных ситуаций и экономических потерь необходимо выбрать оптимальный способ, как предотвратить появление и развитие коррозионного процесса.
Классификация видов коррозии бетона
Существует несколько видов коррозии и вариантов ее протекания.
Растворение компонентов бетонного камня
Один из самых уязвимых для влаги компонентов – гашеная известь (гидрат оксида кальция). Это вещество попадает в бетонную смесь либо в процессе ее изготовления, либо при обработке бетонных элементов водой, загрязненной вредными примесями. При проникновении влаги вглубь бетонной конструкции гидрат оксида кальция легко растворяется и вымывается, что приводит к нарушению структуры цементного камня.
Параметры, влияющие на скорость растворения и вымывания гидроксида кальция:
- Температура, примерно равная +20°C, – наиболее благоприятна для этого процесса. В условиях более высоких температур растворимость этого компонента снижается.
- Продолжительное постоянное воздействие воды. Приводит не только к полному вымыванию гидроксида кальция, но и к разложению других гидратных компонентов – глинозема, кремнезема и оксида железа – до рыхлого состояния, что значительно снижает прочность бетонного камня.
- Чем больше процентное содержание минеральных заполнителей с гидроксидом кальция, тем интенсивнее процесс их вымывания.
Способы значительного замедления разрушающих процессов:
- введение пуццолановых присадок, связывающих гидроксид кальция и повышающих водонепроницаемость бетона;
- применение бетонов повышенной плотности;
- искусственная карбонизация конструкций;
- проведение эффективных мероприятий по гидроизоляции поверхности.
Химическая коррозия
Такая коррозия происходит из-за химреакций между компонентами цементного камня и химически активными средами. В результате этих взаимодействий происходит либо вымывание соединений, легко растворяющихся в воде, либо образование рыхлых осадков, не обладающих вяжущими свойствами. Выделяют несколько подвидов этой коррозии: углекислотная, кислотная и щелочная.
В случае протекания реакции между гидратом оксида кальция (гашеной известью) и углекислым газом, содержащимся практически во всех природных водах, образуется водонерастворимый CaCO3 и вода.
Водонерастворимый карбонат кальция CaCO3 постепенно накапливается в микропорах и микротрещинах бетонного камня, вызывает увеличение его объема и становится причиной трещинообразования и последующего разрушения материала. Карбонат кальция при взаимодействии с водой и углекислым газом образует бикарбонат кальция, представляющий опасность для структуры бетона, а при наличии воды – легко вымывающийся из бетонного элемента. Чем выше концентрация углекислоты в жидкости, тем интенсивнее протекает реакция разрушения конструкции.
При взаимодействии гашеной извести с кислотосодержащими водами в искусственном камне происходит химкоррозия бетона с образованием хлористого кальция, легко удаляемого водой.
Помимо соляной кислоты, чаще всего в природных водах присутствуют серная и азотная кислоты. Серосодержащее соединение кальция – CaSO4, как и карбонат кальция, накапливается в микропорах бетона, постепенно приводя к потере его характеристик. С сульфатами активно реагируют не только гидроксид кальция, но и алюминатные компоненты бетонного камня. Такие реакции являются нежелательными, поскольку в результате их протекания образуются гидросульфоалюминаты.
Самая опасная соль – эттрингит – по мере роста кристаллов вызывает очень сильные напряжения внутри бетонного элемента.
Устойчивость бетонного камня к сульфатсодержащим средам во многом зависит от вида минерального вяжущего. Поэтому, если планируется эксплуатация бетона в сульфатсодержащих водах, то при его производстве используются пуццолановый или сульфатостойкий цементы. Кроме неорганических кислот, коррозию могут провоцировать органические кислоты – молочная и уксусная.
Еще один вид химической коррозии – щелочной – вызывает слишком большое количество противоморозных добавок, применяемых при производстве смеси. Чаще всего встречаются реакции между кремнеземом, содержащимся в заполнителях бетонной смеси, и соединениями калия и натрия. Хлориды калия и натрия находятся в засоленных почвах, морской воде, реагентах, используемых в борьбе с гололедом. В результате таких взаимодействий в цементном камне образуются гидратированные соединения, расширяющиеся в условиях высокой влажности с появлением трещин. Из трещин в некоторых случаях может выделяться силикат натрия.
Биокоррозия
Биологическая коррозия возникает в результате негативного влияния грибков, бактерий и водорослей некоторых разновидностей. Они проникают в поры искусственного камня и развиваются в них. Из-за накопления продуктов их жизнедеятельности бетонный камень разрушается.
Для борьбы с разрушением бетонных конструкций из-за агрессивных биофакторов используют биоцидные добавки, глубоко проникающие в поры материала и уничтожающие микроорганизмы.
Физическая
К быстрому разрушению бетонных элементов приводят попеременные циклы замерзания-оттаивания во время набора марочной прочности. Избавиться от этой проблемы можно путем создания нормальных условий для схватывания и твердения бетонной смеси.
Радиационная
Этому виду коррозионного разрушения подвергаются бетоны в результате радиационного облучения, из-за которого из материала удаляется кристаллизованная вода. Удаление жидкости нарушает структуру бетона, снижает его прочность, провоцирует появление трещин.
Способы защиты бетонных и железобетонных конструкций от коррозионного разрушения
Методы защиты бетона и железобетона от коррозионного разрушения делят на первичные и вторичные. К первым относятся:
- Изначальная корректировка состава, цель которой – обеспечение высокой плотности и прочности бетона, хорошей водонепроницаемости.
- Применение спецдобавок и вяжущих с особыми характеристиками. Применяемые добавки – водоудерживающие, пластифицирующие, стабилизирующие. Часто востребованы мылонафт, кремнийорганические жидкости, сульфатнодрожжевые бражки.
- Разработка конструктивных решений, обеспечивающих защиту стальной арматуры.
Целью вторичных защитных мероприятий является исключение прямых контактов поверхности бетонных и железобетонных конструкций с агрессивными средами. Такими способами являются:
- Устройство оклеечной гидроизоляции. Этот вариант используется при контакте бетонной поверхности с влажным грунтом или при его периодическом смачивании жидкостями-электролитами.
- Применение обмазочных гидроизоляционных материалов. Наиболее распространены мастики на базе различных смол.
- Обработка поверхностей пропитывающими составами. Уплотняющие пропитки, повышающие водонепроницаемость поверхностного слоя бетона, часто наносят перед использованием лакокрасочных составов.
- Применение акриловых и лакокрасочных составов – актуально при взаимодействии поверхности бетонного элемента с твердыми материалами или газосодержащими средами.
Коррозия стальной арматуры в железобетонных конструкциях
Для устройства силового каркаса бетонных конструкций используют стальные арматурные стержни с рифленой или гладкой поверхностью. Их основная функция – повысить устойчивость бетона к нагрузкам на сжатие, растяжение, сдвиг. Коррозионное разрушение арматуры значительно снижает прочность всей конструкции.
Факторы, провоцирующие потерю прочности каркаса, – воздействие воды, наличие в воздухе хлора, сероводорода и других серосодержащих газов.
Вода и газы поступают к стальному каркасу через поры в бетонном камне.
Способы защиты стальной арматуры в бетоне от коррозии:
- Использование рационально составленной бетонной смеси, введение в ее состав ингибиторов, замедляющих коррозионные процессы в стали. Минимальное содержание в бетонной смеси хлоридов и роданидов. Количество хлористого кальция должно быть не более 2% от общей массы вяжущего.
- Пассивирование поверхности стальных стержней перед сваркой или связыванием арматурного каркаса. Пассивирующие вещества вводят и в состав самой бетонной смеси. Чаще всего это нитрит натрия, применяемый в количестве 2-3% от массы вяжущего.
- Улучшение плотности бетона, поскольку чем больше в структуре пустот, тем выше вероятность поступления к стальным стержням воды и агрессивных газов.
- Соблюдение технологических правил укладки силового каркаса в опалубку.
Во избежание преждевременного разрушения железобетонной конструкции необходимо контролировать ее состояние с помощью технологий неразрушающего контроля, предусмотренных ГОСТом 18105-86.
- Строитель с 20-летним стажем
- Эксперт завода «Молодой Ударник»
В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.
Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.
Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.
Защита бетона от коррозии
Коррозия бетона – постепенное разрушение цементного камня под воздействием минеральных соединений и негативных факторов окружающей среды. По типу химических реакций, протекающих в теле бетона, выделяют 3 вида коррозий: выщелачивание, кристаллизация и растворение цементного камня. Отдельно упоминают коррозию арматуры, которая также приводит к преждевременному разрушению железобетонных конструкций.
Процесс и признаки выщелачивания
Выщелачивание – химический процесс, во время которого из цементного камня вымывается кальций. В результате этого конструкция теряет марочную прочность, морозостойкость и водопроницаемость, а срок ее службы сокращается вдвое. Внешними признаками выщелачивания являются:
- белые пятна и потеки, проступающие на бетонном полотне;
- пористая структура материала;
- хлопьевидные образования или сталактиты на его поверхности.
Главной причиной выщелачивания считается прямой контакт бетонного полотна с грунтовыми водами в результате неправильной гидроизоляции. Проникая в поры, мягкая вода растворяет кальций и вымывает его из цементного камня. Масштабы разрушения конструкции зависят от уровня жесткости воды и скорости ее фильтрации.
Возникновение и развитие кристаллизации
Проникая в тело бетона, соли, щелочи и сульфаты вступают в активную химическую реакцию с цементным камнем. Продукты коррозии откладываются в каменных порах и приводят к разрыву и повреждению полотна. Корродирующий бетон разбухает и деформируется, т.к. объем твердой фазы в нем увеличивается.
Данный вид коррозии называется кристаллизацией. В зависимости от типа активного вещества она может быть сульфатной, щелочной или соляной. Определить вид кристаллизации помогают лакмусовые бумажки и внешний вид бетона:
- при сульфатной коррозии материал покрывается глубокими трещинами;
- при соляной – пузырьками, которые откалываются от бетона плоскими круглыми осколками;
- при щелочной – сеткой мелких трещин и белесыми пятнами.
- Причинами развития кристаллизации считаются:
- неправильный выбор проектной марки бетона;
- типовые нарушения при изготовлении товарной смеси;
- конденсат на стенах и перекрытиях.
Прямой контакт бетона с грунтовыми водами также провоцирует развитие кристаллизации.
Разъедание цементного камня
Под воздействием агрессивной среды с высоким содержанием кислот кальций распадается на легкорастворимые соли и аморфные вещества. Вследствие этого бетон становится рыхлым и утрачивает прочность. Причинами разъедания цементного камня являются:
- смачивание железобетонных конструкций дождевой водой;
- неправильная организация выброса технологических вод и пара через стены и фундаменты;
- контакт с кислыми грунтами и водами.
Пораженный материал имеет рыхлую структуру и бурый цвет. При механическом воздействии от него отслаиваются бетонные площадки и куски раствора.
Образование ржавчины на поверхности полотна
Несмотря на то, что металлические элементы в железобетоне находятся в безвоздушной среде, они также могут разрушаться. Растрескивание бетона по линии залегания арматуры, ржавчина на поверхности полотна и изменение цвета материала – первые признаки коррозии металла.
Причинами разрушения арматуры являются:
- нейтрализация бетона кислыми газами;
- проникновение в материал агрессивных солей;
- электрокоррозия, вызванная блуждающими токами.
При контакте с кислородом, солями и постоянным током металлические пруты покрываются ржавчиной. Для предотвращения ее развития все железные элементы конструкции обрабатывают химическими добавками перед погружением в бетонный раствор. В рамках вторичной защиты от блуждающих токов электрики применяют катодный, протекторный и дренажный методы.
Первичная защита материала
На этапе приготовления бетонного раствора в его состав вводят модифицирующие добавки. Они изменяют минералогический состав цементного камня, улучшают его прочностные характеристики и нивелируют коррозийные процессы. По типу воздействия добавки подразделяются на следующие группы:
- пластификаторы;
- уплотнители;
- замедлители схватывания;
- ингибиторы коррозии;
- гидрофобизирущие;
- морозостойкие;
- газообразующие и воздухововлекающие.
При выборе добавки технологи учитывают климатические особенности региона, а также химический состав и свойства местной почвы.
На территории России наиболее популярными являются мылонафт, бражка СДБ, кремнийорганическая жидкость ГКЖ-94, а также гашеная известь.
Мылонафт – пластификатор на основе солей натрия. Он улучшает удобоукладываемость, морозостойкость и водонепроницаемость бетона в несколько раз. Смеси, приготовленные на его основе, устойчивы к воздействию солей и образованию трещин.
Бражка СБД – сульфитно-дрожжевой пластификатор. Он также увеличивает подвижность, морозостойкость и водоупорность бетона в 2-3 раза. Материалы, в состав которых входит бражка СБД, не вступают в химические реакции с минеральными солями и долгое время сохраняют первичный вид.
ГКЖ-94 – гидрофобизирующая жидкость на основе кремния. Бетоны с добавлением ГКЖ-94 имеют максимальное количество замкнутых пор и отличаются повышенной морозостойкостью. Они пригодны для заливки в местах с высоким содержанием минеральных солей.
Нанесение защитных покрытий
Для защиты бетонов от разрушений используются следующие категории строительных материалов:
- лакокрасочные покрытия подходят для конструкций, подверженных атмосферным воздействиям, конденсату и влиянию парогазовой среды;
- штукатурки, шпаклевки, жидкая резина применяются в высокоагрессивных средах;
- резина, рубероид и прочие рулонные материалы предназначены для защиты фундаментов, подземных помещений и магистралей, а также в качестве подслоя для чистовой отделки;
- футеровка – покрытие, в состав которого входят грунтовки, изоляторы и облицовочные материалы, устойчивые к агрессивным химическим средам.
Перед началом облицовочных работ бетон очищают от пыли и грязи. При обнаружении неровностей поверхность реставрируют и зачищают. Для этого мастера используют проволочные щетки, пескоструйные аппараты, шлифовальные машины и ручные пылесосы. В обязательном порядке удаляются все масляные пятна, а также соляные отложения, ржавчина и кислотные разводы.
Чтобы предотвратить дальнейшее разрушение и разъедание окисленных материалов, их поверхность тщательно обрабатывают раствором кальцинированной соды и промывают теплой водой.
Любые покрытия наносятся на сухую, подготовленную поверхность. При их выборе учитываются следующие требования.
- Для защиты пористых бетонов применяется водная грунтовка, которую наносят в 2-3 слоя и тщательно просушивают.
- Шпатлевка подходит для обработки неровных поверхностей и защиты бетонов в агрессивной среде. Она предотвращает проникновение солей в цементный камень и его дальнейшее разрушение.
- Лаки и краски используются в качестве отдельной защиты, так и в комплексе с армирующими материалами: стекловолокном, капронами, хлориновыми тканями и стеклосетками. Стойкое покрытие предотвращает разъедание бетона солями и кислотами.
Выбирая защитное покрытие, следует также учитывать место эксплуатации конструкции (улица/помещение) и свойства агрессивной среды. В некоторых случаях меры по защите, восстановлению и усилению сооружений являются малоэффективными. В этом случае принимаются меры по снижению агрессивного действия окружающей среды.
Нивелирование агрессивного действия среды
Фундаменты, подземные сооружения и коммуникации наиболее подвержены выщелачиванию и карбонизации грунтовыми водами. Чтобы нейтрализовать влияние агрессивной среды, проводится обустройство следующих конструкций:
- дренажи;
- кюветы;
- нагорные канавы;
- водонепроницаемые завесы;
- лотки.
На пути грунтовых вод также выставляют глиняные, битумные, петролатумные подушки. Траншеи, наполненные известняком, подходят для очистки сточных и грунтовых масс от углекислоты и кислых солей.
Для нейтрализации парогазовой среды внутри зданий используют дополнительную вентиляцию и просушку. Кислоты, попавшие на поверхность бетона, нейтрализуются содовыми и щелочными растворами.
Повышение стойкости бетонных сооружений
Для восстановления поврежденных бетонов применяют такие технологии, как обработка поверхностей и инъекции растворов в толщу конструкции. Инъекции классифицируются по типу расходных материалов на цементные, битумные, силикатные и смоляные.
В процессе цементации в бетоне пробуривают глубокие отверстия, через которые в полотно нагнетают цементный раствор повышенной прочности. В результате застывания бетонные столбики предотвращают разрушение конструкции, повышая ее прочностные характеристики.
Силикатизация проводится по той же технологии, однако вместо цемента в отверстия заливается жидкое стекло и раствор хлорида кальция. Образующийся в результате химических реакций гидросиликат устойчив к растворению и вымыванию из бетона.
Битумизация – процесс обогащения железобетона битумом. Добавка повышает прочность и коррозийную стойкость бетона в агрессивных средах, а также нивелирует риск образования ржавчины.
Смолизация – технология укрепления и защиты мелкопористых бетонов. В отверстия вводят водный раствор карбамидной смолы и химически нейтральные отвердители. После застывания смолы снижают истираемость и хрупкость конструкции.
В отличие от инъекций, технология обработки поверхностей не требует больших трудозатрат. В качестве расходных материалов применяются полимеры (технология гидрофобизации), либо флюаты (флюатирование). Специальные составы наносятся на бетонные кистью, валиком или пульверизатором.
Чтобы предотвратить разрушение бетона в агрессивной водной среде, специалисты рекомендуют проводить регулярную обработку поверхностей. Химические растворы и пропитки глубокого проникновения эффективно защищают конструкции от атмосферных осадков, конденсата и агрессивной парогазовой среды.
Бетон от компании EuroBeton
КСМ «ЕвроБетон» предлагает цементные растворы, товарные бетоны и ж/б-конструкции собственного производства. Продукция компании соответствует требованиям ГОСТ и международным стандартам качества. Перед поступлением в продажу строительные материалы проходят лабораторную проверку и комплектуются строительными паспортами.
Все материалы изготовлены с учетом климатических особенностей Ростова-на-Дону и почвенным составом региона. Для получения более подробной информации позвоните по указанному телефону или оставьте заявку на обратный звонок.
Методы защиты бетонных и железобетонных конструкций от коррозии
Защита бетонных, а также каменных конструкций от коррозии заключается, с одной стороны, в снижении агрессивности среды, а с другой — в повышении стойкости конструкции, в устройстве защитных покрытий или в совместном применении этих мер. Защита железобетонных конструкций строится, кроме того, на подавлении коррозионных токов, возникающих в арматуре, или на дренаже блуждающих токов. Классификация методов защиты дана в табл. 9.1.
Снижение агрессивности среды. Агрессивное действие среды может быть уменьшено путем понижения уровня грунтовых вод или отвода их от сооружений.
Осушение производится посредством дренажа. Нередко в сооружениях приходится дополнительно устраивать дренаж для защиты их от воздействия агрессивных грунтовых вод и для осушения подвальных помещений. Дренаж может быть проложен за пределами сооружения или под его полом.
Снижение агрессивного действия грунтовых вод, загрязненных кислыми промышленными стоками или агрессивной С02 (составной частью нестойкой угольной кислоты), достигается прокладкой на их пути траншей, заполненных известняковым камнем. Агрессивное действие парогазовой среды внутри сооружений может быть уменьшено усиленной вентиляцией.
Повышение коррозионной стойкости поверхностного слоя конструкций. Оно достигается обработкой их поверхности торкретированием, гидрофобизацией, силикатизацией, флюатиро- ванием, карбонизацией.
Торкретирование состоит в нанесении защитного цементного слоя или активированного цемента на очищенную бетонную поверхность под давлением сжатого воздуха 5—6 ати. Смесь цемента и песка (в среднем 1 :3) подготавливается заранее в растворомешалке или вручную. Активированный торкрет представляет собой смесь вибромолотах цемента и песка, песка и поверхностно-активных добавок. Сухая смесь по шлангу подается к соплу, где смачивается водой, а затем наносится на защищаемую поверхность.
Торкретирование производится обычно в два слоя. Для первого слоя (10—20 мм) рекомендуется портландцемент марки не ниже 300 и песок не крупнее 5 мм. Для второго слоя (10— 15 мм), наносимого через 24 ч, применяется более стойкий пуц- цолановый портландцемент марки 500 и песок не крупнее 2— 2,5 мм. В верхний слой торкрета для придания ему большей стойкости в агрессивной среде и гидрофобных свойств вводится раствор битума марки 3 или 4 в бензине второго сорта. На 1 кг цемента добавляется 300 г битумного раствора, приготавливаемого в пропеллерной мешалке путем растворения кускового битума в бензине.
Для ускорения схватывания и повышения антикоррозионных свойств защитного слоя в него вводится жидкое стекло. Правда, при этом он становится менее эластичным и более хрупким.
Создание непроницаемого слоя на поверхности прочных каменных материалов достигается полировкой, способствующей заполнению пор и пустот частицами камня, и последующим нанесением разогретых парафина, воска, олифы.
Гидрофобизация (придание способности не смачиваться водой) поверхностей кирпичных, бетонных и других конструкций имеет целью защиту их от атмосферных осадков в условиях повышенной влажности. Для гидрофобизации строительных конструкций используются следующие кремнийорганические полимерные материалы:
водная эмульсия ГКЖ-94, представляющая собой 50 %-ный раствор кремнийорганической жидкости ГКЖ-94, содержащей в качестве эмульгатора желатину;
раствор ГКЖ-94 в уайт-спирите или керосине; водный раствор ГКЖ-94, являющийся смесью кремнийорга- нических соединений.
Кремнийорганические материалы поступают готовыми к употреблению в виде жидкости ГКЖ-94 (100 %), водной эмульсии ГКЖ-94 (50 %) и водного раствора ГКЖ-Ю (20— 25%). Гидрофобный материал требуемой концентрации необходимо приготовить из исходной водной эмульсии на рабочем месте.
Для гидрофобизации конструкций указанные материалы наносят кистью или пульверизатором на сухую, предварительно очищенную поверхность из расчета на 1 м2 поверхности 250— 300 г 20 %-ной эмульсии, нанесенной в один слой.
Силикатизация поверхностного слоя состоит в нанесении на конструкцию (главным образом из естественных каменных материалов) жидкого стекла, а после его высыхания — раствора хлористого кальция; при этом происходит реакция Na2OSi02 + СаС12 = CaOSi02 + 2NaCl, (9.3) в результате которой образуются силикат кальция, заполняющий поры и повышающий стойкость конструкции, и соль, смываемая водой.
Флюатирование поверхности конструкций основано на взаимодействии свободной извести и растворов кремнефтористых солей легких металлов (магния, алюминия, цинка), которые, вступая в реакцию с углекислым кальцием, образуют нерастворимые продукты, оседающие в порах и уплотняющие конструкции.
Флюатирование бетонов начинается с нанесения на сухую очищенную поверхность раствора хлористого кальция, а затем флюагов. Флюаты наносятся кистью или распылителем в три слоя с повышением их концентрации: для первого — 2—3% по массе, для третьего — уже 12%. Каждый слой наносится после прекращения впитывания флюата с перерывами до 4 ч на его высыхание. После нанесения очередного слоя поверхность обрабатывается насыщенным раствором гидрата окиси кальция Са(ОН)2, приготавливаемым путем растворения извести в воде.
Поверхность бетона может обрабатываться также 3— 7%-ным раствором кремнефтористоводородной кислоты H2SiF6; при этом на поверхности образуется пленка фтористого кальция и кремнезема. Такая обработка повторяется несколько раз после высыхания каждого предыдущего слоя.
Расход флюата зависит от плотности и структуры обрабатываемого материала и составляет 150—300 г кристаллической соли на 1 м2 поверхности.
Карбонизация поверхностного слоя свежеприготовленного бетона состоит в превращении гидрата окиси кальция Са(ОН)2 под воздействием углекислого газа в карбонат кальция Са(СО)3, который более стоек к внешним воздействиям.
Устройство защитных покрытий. Одним из методов защиты конструкций является устройство или восстановление защитных покрытий: глиняной набивки, слоев обмазки, покраски, штукатурки КЦР, рулонного покрытия или слоя облицовки. Защита конструкций в этом случае основана на изоляции их от агрессивной среды, а потому покрытия должны быть водостойкими и водонепроницаемыми, а в особых случаях — и механически прочными. Чем агрессивнее среда, тем надежнее должна быть защита.
Особенность осуществления изоляции в агрессивной грунтовой среде, в отличие от обычной гидроизоляции, состоит в том, что она должна быть химически стойкой и наноситься обязательно с наружной стороны конструкции. Защита от воздействия внутренней агрессивной среды производится изнутри сооружения, при этом защищается вся толща конструкции.
В условиях эксплуатации необходимо зачастую восстанавливать защитные покрытия, предусмотренные проектом, в отдельных же случаях их устраивают вновь по специально разработанному проекту.
Штукатурная гидроизоляция коллоидным цементным раствором (КЦР) используется для противофильтрационной защиты подземных и подводных сооружений без ограничения величины действующего напора при работе гидроизоляции «на прижим» и напорах Р = 0,1 Па, при работе ее «на отрыв», а также при повышенной и постоянной влажности воздуха. Запрещается применение КЦР, если среда химически агрессивна по отношению к обычному портландцементу, а также при электрохимической агрессивности окружающей среды с блуждающими токами.
Коллоидный цементный раствор представляет собой высокодисперсную смесь вибромолотых цемента и песка, молотого песка и поверхностно-активных веществ. Он приготавливается в вибросмесителе, где производится двухчастотная обработка массы и одновременное перемешивание раствора в течение 5—6 мин.
Для гидроизоляции горизонтальных поверхностей рекомендуется КЦР, а для вертикальных — активированный торкрет (АТ). Это такой же КЦР, но смешение и нанесение его производятся цемент-пушкой, как обычного торкрета. В составе АТ увеличено содержание сульфитно-дрожжевой бражки до 2—2,5%.
Для устройства защитных покрытий пригодны и такие материалы, как эпоксидные смолы, цементно- и битумно-латексные композиции и др. Битум, являющийся отходом нефтепереработки и относительно дешевым материалом, широко используется для защитных покрытий. Соединяя битумы с каучуком, резиной, зеленым маслом и синтетическими смолами, можно повысить стойкость битумных покрытий в агрессивной среде.
Битумы применяются в разогретом (до 150—200 °С) виде смешанными с наполнителями, растворенными в маслах или углеводородах, а также в виде водорастворимых эмульсий или паст. Приготовление битумных растворов и эмульсий труднее, чем расплавов, но зато наносить их легче и безопаснее. Наиболее высокое качество таких покрытий достигается при правильном нанесении расплавленного битума, самое низкое — при нанесении битумных эмульсий.
Битумные покрытия в виде шпаклевок, плотных штукатурок и облицовок предназначены для защиты конструкций в сильноагрессивных атмосферных и агрессивных жидких средах без механических воздействий.
По мере повышения напора воды переходят к рулонной оклеечной изоляции и защите ее кирпичной стенкой. Так, при напоре до 800 мм устраивается двухслойный ковер, при 800— 1200 мм — трехслойный и защитная стенка в четверть или полкирпича, а при напоре более 1200 мм — четырехслойное покрытие. В ответственных сооружениях требуется листовая металлическая изоляция, которая, в свою очередь, защищается от воздействия агрессивной среды обмазками или электрохимическими методами.
Внутри зданий и сооружений для защиты конструкций от разрушения промышленными стоками и предотвращения проникновения их в грунт устраиваются кислотостойкие поддоны, отличающиеся тем, что собственно изоляция из битумной мастики или рулонного материала защищена от механических повреждений кислотостойкими плитками либо кирпичом.
Для защиты стен и покрытий от разрушения парообразной агрессивной средой применяются лаки и эмали, наиболее часто— битумно-смоляные эпоксидные эмали, ПХВ эмали и лаки, кремнийорганические эмали. Лакокрасочные покрытия легко наносятся и восстанавливаются, они экономичны. Из-за их высокой проницаемости они выполняются многослойными — от трех до восьми слоев, в зависимости от степени агрессивности среды.
При восстановлении или устройстве любого защитного покрытия особое внимание уделяется подготовке поверхности: она должна быть чистой, ровной (гладкой) и сухой; это в значительной мере предопределяет надежность и долговечность покрытия.
Повышение плотности и прочности конструкций нагнетанием в них растворов. Инъекция растворов в конструкции (о технологии и устройствах для нагнетания растворов см. гл. 13) с целью повышения их плотности и прочности может быть осуществлена цементацией (нагнетание цементного молока), силикатизацией (нагнетание жидкого стекла) и смоли- зацией (нагнетание синтетических смол).
Цементация заключается в нагнетании цементного раствора через пробуренные в конструкции отверстия, что увеличивает ее плотность и водонепроницаемость, а тем самым и коррозионную стойкость. Для цементации применяется раствор цемента и воды в пропорции 1:10. Чтобы ускорить его схватывание, в него вводят хлористый кальций — не более 7 % от массы цемента.
Повышение плотности и водонепроницаемости бетонных и железобетонных конструкций путем цементации, как показал опыт, недостаточно эффективно: фильтрация воды начинается очень быстро вновь; это объясняется грубодисперсным составом цементов, которые проникают в поры и трещины с раскрытием 0,2—0,1 мм, в то время как напорная вода фильтрует по каналам сечением 2-10
4 мм. Эффективность цементации может быть существенно повышена введением в раствор высокодисперсного магнитного вещества (подробнее см. гл. 13).
Силикатизация состоит в нагнетании через пробуренные в конструкциях отверстия (или иным способом) жидкого стекла, которое, проникая в пустоты и поры, заполняет их. Вводимый вслед за этим раствор хлористого кальция, реагируя с жидким стеклом, образует уплотняющий осадок из плохо растворимого гидросиликата кальция CaOSi02 2,5 Н20 и нерастворимого геля кремнезема Si02-«H20. Твердение гидросиликата и кремнезема завершается быстро —за четверо суток.
Смолизация мелкотрещиноватого, пористого бетона осуществляется путем нагнетания водного раствора карбамидной смолы, которая затвердевает при добавлении специально подобранного отвердителя, не агрессивного к бетону (например, щавелевой или кремнефтористоводородной кислоты). Смолизация предусматривает предварительное нагнетание в бетон 4 %-ного раствора щавелевой или кремнефтористоводородной кислоты (для локализации поверхностного слоя карбонатов кальция и гидрата окиси кальция созданием защитной пленки нерастворимого щавелевокислого кальция, препятствующего нейтрализации кислоты из раствора) и последующее введение раствора карбамидной смолы с отверждающей добавкой.
Смолизация — это тампонаж химических растворов — смолы и отвердителя; она рекомендуется для повышения плотности и водонепроницаемости конструкций с мелкими порами при отсутствии фильтрации воды (подробнее см. гл. 13).
При обследовании участков фильтрации определяется количество проникающей воды и величина трещин.
В зависимости от удельного водопоглощения опытным путем устанавливается ориентировочный расход материалов (смолы и кислоты) в расчете на 1 м скважины.
Зависимость между основными параметрами нагнетания растворов. Нагнетание растворов в конструкции — процесс очень сложный и трудоемкий, ибо при этом должны быть заполнены мельчайшие пустоты размером до 2- 10-4 см, по которым протекает вода, и до 10-5 см, по которым проникает воздух. Пустоты в бетонных конструкциях весьма разнообразны: они бывают переменного сечения, сквозными или тупиковыми, заполненными водой под напором или воздухом, и т. п.
Приступая к нагнетанию растворов, необходимо хотя бы приблизительно установить зависимости между основными параметрами нагнетания. Принимаем, что заполняются сквозные капилляры, по которым проходит воздух или вода. Гидроизоляция в расчете не учитывается.
Время нагнетания раствора Т зависит от его вязкости р, начального давления р0, толщины конструкции L, диаметра пустот г0. Расчетные значения параметров нагнетания определяют исходя из максимального наполнения капилляров, обеспечивающего надежную герметичность конструкции; они приведены в [13].
Расход маловязких материалов ориентировочно может быть определен по удельному водопоглощению. Практическая реализация всех этих вопросов рассмотрена в тринадцатой главе.
Тампонажные растворы с добавкой ферромагнитного порошка позволяют существенно сократить время уплотнения конструкции и расход раствора. Однако уплотнение конструкции при этом происходит только у поверхности — из герметика создается своеобразная пробка.
На основании изложенного можно заключить, что для защиты древесины от гниения и разрушения надо создавать вокруг эксплуатируемых конструкций такую температурно-влажностную среду, в которой не могли бы произрастать грибы. Если этого осуществить нельзя (не позволяет технологический или функциональный процесс либо иные условия), древесину конструкций необходимо обработать специальными ядохимикатами — антисептировать.
Каждому виду домового гриба присущи специфические признаки, своя окраска, те или иные формы развития грибницы (мицелия) и разрушения древесины. Все это составляет диагностические признаки грибов [16]. Для определения вида гриба и степени поражения конструкции иногда может потребоваться специальное микроскопическое исследование образцов древесины в лаборатории.
Внешний вид древесины, пораженной настоящим домовым грибом, показан на рис. 10.1,6. Основным признаком появления домовых грибов (рис. 10.1, а) служит наличие гифов (нитей гриба) на древесине. На более поздней стадии поражения древесина буреет, темнеет, покрывается трещинами. К этому времени на пораженных ее участках вырастает грибница, имеющая обычно вид ваты белой или яркой окраски.
В зданиях дереворазрушающие грибы развиваются там, где возникают благоприятные для этого условия по температуре, влажности и скорости движения воздуха. Обычно это сырые темные непроветриваемые помещения или их части: подполья на сыром грунте и необитаемые подвалы; неантисептированные концы балок в каменных стенах; накаты перекрытий при неисправных крышах; деревянные перегородки из сырого леса, оштукатуренные с двух сторон; полы, накаты, балки под санузлами и кухнями при повышенной влажности; деревянные конструкции, увлажненные и плохо проветриваемые.
Участки древесины, пораженные грибами, вырезаются и сжигаются, после чего конструкция усиливается антисептиро- ванной древесиной или специальными металлическими протезами. Во избежание повторного поражения древесины грибами надо улучшить уход за ней: не допускать увлажнения, обеспечивать проветривание и т. п.
Вредителями древесины являются также жуки-точильщики, их личинки и термиты. Участки древесины, пораженные жуками и их личинками, тщательно осматриваются, после чего решается вопрос о несущей способности данного элемента, его замене или протезировании. Пораженные участки вырезаются и сжигаются. В жарких районах большой вред деревянным конструкциям, особенно элементам, расположенным вблизи земли, наносят термиты.
МЕТОДЫ ЗАЩИТЫ ОТ КОРРОЗИИ
Для увеличения долговечности сооружений и снижения эксплуатационных расходов, связанных с коррозионными процессами, применяются два направления: первичная и вторичная защиты.
Первичная защита предусматривает:
- • выбор объемно-планировочных и конструктивных решений (в части назначения сечения), направленных на снижение воздействий окружающей агрессивной среды;
- • применение выбранных строительных материалов, отвечающих данным условиям среды с повышенной коррозионной стойкостью;
- • уменьшение интенсивности газо- и пылевыделения благодаря использованию герметичного оборудования, а также улавливание выбросов в атмосферу.
Вторичная защита включает дополнительные элементы конструкций в виде защитных покрытий:
- • лакокрасочных;
- • оклеенных изоляций;
- • облицовочных покрытий и футеровок;
- • штукатурных покрытий;
- • уплотняющих пропиток и др.
Защитные мероприятия зависят от степени и вида агрессивности среды, а также от типа материала конструкции.
Защита от коррозии каменных и бетонных конструкций
Защита осуществляется разными способами в зависимости от характера воздействий.
Применительно к элементам зданий и сооружений наибольшие возможности по увеличению химической стойкости за счет первич-
Рис. 6.1. Методы защиты бетонных и каменных конструкций
ной зашиты заложены в бетоне. Выбор типа цемента, повышение плотности бетона, подбор заполнителей, ограничение трещиностой- кости и нормирование величины защитного слоя — мероприятия, в результате которых возможно повысить коррозионную стойкость конструкций.
Стеновые конструкции из искусственного камня укрепляются прокладкой металлических сеток, укладываемых в горизонтальных швах. Долговечность конструкции обусловливается качеством применяемых растворов и бетонов.
В условиях сульфатной коррозии может также использоваться бетон на низкоаллюминатном цементе. Основным фактором, определяющим химическую стойкость бетона, является его плотность. Для конструкций, эксплуатирующихся в агрессивных средах, плотность бетона является таким же важным показателем, как прочность при расчете на механические воздействия.
За счет снижения водопотребности и улучшения пластичности смеси при использовании добавок можно значительно увеличить плотность бетона, повысить его морозостойкость, а путем введения добавок-ингибиторов коррозии стали — улучшить защитные действия бетона по отношению к арматуре.
Величина раскрытия трещин зависит от процента армирования, прочности бетона, величины напряжения в арматуре, жесткости стыков, анкеровки и т. д. Однако во всех случаях она увеличивается при росте напряжений и деформаций. С увеличением ширины раскрытия трещин возрастает скорость депассивации и проникновения агрессивных ионов.
Ускорение коррозии арматуры в зоне трещины может происходить в результате проникновения агрессивных продуктов.
При небольшом раскрытии трещин (0,05—0,1 мм) в газовоздушной среде возможна их кольматация в результате заполнения продуктами коррозии бетона или пыли. В сильноагрессивных средах предельная величина раскрытия трещин не должна превышать 0,05 мм. Для арматуры ненапряженных конструкций, работающих в атмосфере цеха при сохранении защитного слоя, наличие трещин шириной раскрытия до 0,25 мм не представляет сколько-нибудь серьезной опасности.
Химически стойкие бетоны применяются в строительных конструкциях многих производств, подвергающихся особенно тяжелым эксплуатационным воздействиям: периодическим проливам кислот, щелочей, растворов солей, увлажнению водой при повышенных температурах, значительным механическим, в том числе вибрационным нагрузкам.
Кислотоупорные бетоны в настоящее время используются для не- армированных конструкций или при наличии только конструктивной арматуры: фундаменты под оборудование, блоки для футеровки, плиты для полов, арки и своды, работающие на сжатие. Работы по улучшению свойств кислотостойких композиций на жидком стекле привели к появлению новой модификации бетона — полимерсиликатбетона.
В процессе воздействия кислот на такой бетон происходит некоторое самоуплотнение за счет кольматации пор при контакте концентрированных кислот с введенными добавками.
Защитный слой толщиной 25—40 мм, отсутствие трещин, правильно подобранный состав могут обеспечить сохранность арматуры на весь период эксплуатации сооружения.
В качестве вторичной защиты для бетона, асбоцемента, кирпича и других капиллярно-пористых материалов применяются лаки или эмали. Лаками называются пленкообразующие материалы, представляющие собой раствор полимерных (или олигомерных) смол в летучих растворителях. В процессе образования покрытия растворитель постепенно испаряется.
Ш патлевки предназначены для исправления дефектов, связанных с наличием неровностей на поверхности. Они характеризуются высокой степенью наполнения. Используются шпатлевки в антикоррозионной защите строительных конструкций весьма редко, в основном, для исправления дефектов в бетонных поверхностях, вызванных наличием пор и раковин. При этом защитные свойства системы снижаются.
Для уменьшения пористости в условиях агрессивных сред наносят многослойные покрытия, в которых каждый последующий слой более чем на 30—50 % перекрывает поры нижележащего. С повышением степени агрессивности среды количество защитных слоев увеличивается до 10—12. Свойства лакокрасочных покрытий определяются не только пористостью.
Для бетонных, асбоцементных и других конструкций требования по подготовке поверхности заключаются в ограничении ее сорбционной влажности (до 4 %) и поверхностной пористости (не более 5 %), отсутствии пыли, жировых пятен, раковин и т. д.
Одним из видов вторичной защиты является нанесение на строительные конструкции составов, придающих им свойства не смачиваться водой, — так называемые гидрофобизация и флюатирование. Гидрофобные покрытия применяют в основном для обработки пористых поверхностей (бетон, пенобетон, керамзитобетон). Гидрофобные покрытия на основе метилсиликонатов натрия отличаются повышенной морозо- и химической стойкостью. Недостатком гидрофоби- зации является необходимость восстановления покрытий через 1—3 года.
При гидрофобизации бетон пропитывается на глубину 2—10 мм гидрофобными (водоотталкивающими) составами на основе крем- нийорганических полимерных материалов: ГКЖ-94, ГКЖ-10. Составы наносятся кистью или пульверизатором на предварительно очищенную сухую поверхность конструкции.
В случае флюатирования делается обработка бетона 3—7%-ным раствором кремнийфтористоводородной кислоты. При этом крем- нийфтористомагний MgSiF6, реагируя с ионами кальция, образует на стенках пор и капилляров цементного камня нерастворимый защитный слой из кристаллов фтористого кальция и кремнезема. Флюат наносится на поверхность бетона в 3—4 слоя. Интервал между нанесением слоев обычно составляет четыре часа.
Для антикоррозионной защиты применяют профилированный полиэтилен низкой плотности. Лучший способ защиты профилированным полиэтиленом — крепление его к поверхности в процессе бетонирования железобетонных конструкций. Применяется он и для защиты монолитных сооружений, например, резервуаров. Полиэтиленовые листы с одновременным пригрузом укладывают в свежеприготовленный бетон, в процессе схватывания которого осуществляются механические закрепления ребер-анкеров. Полиэтилен является весьма стойким пленочным материалом.